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Abstract

Computational topology is a vibrant contemporary subfield and this article integrates knot
theory and mathematical visualization. Previous work on computer graphics developed a
sequence of smooth knots that were shown to converge point wise to a piecewise linear
(PL) approximant. This is extended to isotopic convergence, with that discovery aided
by computational experiments. Sufficient conditions to attain isotopic equivalence can
be determined a priori. These sufficient conditions need not be tight bounds, providing
opportunities for further optimizations. The results presented will facilitate further com-
putational experiments on the theory of PL knots (also known as stick knots), where this
theory is less mature than for smooth knots.
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1. Introduction & Related Work

For a positive integer n, a Bézier curve Piegl and Tiller (1997)of degree n is defined as
B(t), with control points Pi ∈ R3 by

B(t) =
n∑

i=0

(
n

i

)
ti(1− t)n−iPi, t ∈ [0, 1].

The curve P formed by PL interpolation on the ordered set of points {P0, P1, . . . , Pn} is
called the control polygon. This P is a PL approximation of B.

The curves considered here will be closed by understanding that P0 = Pn. Furthermore, it is
assumed that both the Bézier curves and their control polygons are simple. The focus here
is on the isotopic equivalence between a knotted Bézier curve and its PL approximation.
These knotted PL approximations are also known as ‘stick knots’ Adams et al. (1997).
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A contemporary treatment of knots and molecules Wertheim and Millett (2006) provided
motivation for much of this work. In particular, remarks on the “... humbling ...” status in
theoretical understanding of stick knots versus smooth knots stimulated the consideration,
here, of Bézier curves that are isotopically equivalent to stick knots.

The term ‘molecular movies’ was introduced McGill (27 June 2008) to include the visual-
ization of molecular simulations. There is a specific cautionary example Li et al. (2015)
about introducing topological artifacts into a molecular movie. The relevant knots were 41

and the unknot, represented in sufficiently simple format that isotopic equivalences were
easily determined by standard methods Livingston (1993). Knot visualization software
Marsh and Peters (2008) was used to develop that illustrative example.

Those application specific considerations Li et al. (2015) led to the generalizations presented
here. The theorem presented here generalizes that example to sufficient conditions for
convergence between Bézier curves and their isotopic PL approximations. An a priori
bound is given on the number of iterations needed to obtain an isotopic approximation.

The preservation of topological characteristics in computational applications is of contem-
porary interest Amenta et al. (2003); Andersson et al. (1995, 1998); Chazal and Cohen-
Steiner (2005); Chazal et al. (2011); Denne and Sullivan (2008); Etiene et al. (2012); Jordan
et al. (2014b, 2008); Kirby and Silva (2008); Li and Peters (2013); Maekawa et al. (1998).
The isotopy theorems on knots of finite total curvature are foundational to the work pre-
sented here. Sufficient conditions for a homeomorphism between a Bézier curve and its
control polygon have been studied Neagu et al. (2000), while topological differences have
also been shown Bisceglio et al. (2011); Li et al. (2012); Piegl and Tiller (1997). Sufficient
conditions were given to insure that perturbations of the control points maintain isotopic
equivalence of the perturbed splines Andersson et al. (2000). There is an example of a
PL structure that becomes self-intersecting while the associated Bézier curve remains sim-
ple Cassidy et al. (2014). Recent perspectives on computational topology have appeared
Carlsson (2009); Edelsbrunner and Harer (2010); Zomorodian (2005).

2. Inserting Midpoints as Control Points

The fundamental approximation technique introduced here is dual to many others. The
more typical focus is to produce a sequence of PL curves that approximates a given smooth
curve. Indeed, these authors have previously published such results Jordan et al. (2014a).
The duality here is to create a sequence of smooth knots that converge to a PL knot, achiev-
ing isotopic equivalence within the sequence. The use of smoothness here is understood
to be C∞, with a possible exception at the point B(0) = B(1). This technique has been
called collinear insertion Li et al. (2015), where an example was presented with 8 initial
control points (inclusive of equality of the initial and final control points). That control
polygon was the knot 41 and its associated Bézier curve was the unknot. With 4 iterations
of collinear insertion, the stick and smooth knots were isotopic.
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Definition 2.1. Consider the control polygon P. To avoid trivial cases, it is assumed that,
for i > 0,

• Pi 6= Pi∗ for any i 6= i∗,
• only two such Pi 6= Pi∗ can be collinear and

• n ≥ 4.

Sequences of control polygons and Bézier curves will be generated by letting P(0) = P and
generating P(1) from P(0) by adding the midpoint of each edge of P(0). For j ≥ 0, similarly
generate P(j+1) by the insertion of midpoints between all of the control points of P(j). For
each j, the corresponding Bézier curve will be denoted as B(j). Note that all P(j)’s are
isotopic under the trivial identification map.

3. Convergence Theorem

The primary convergence result relies upon a previously published theorem (Denne and
Sullivan, 2008, Theorem 4.2) on rectifiable Morgan (2008) graphs of finite total curvature
Milnor (1950). This central theorem is quoted, below, after definition of a key notion of
closeness.

Definition 3.1. Given two rectifiable embeddings Γ1 and Γ2 of the same combinatorial
graph, we say they are (δ, θ) − close if there exists a homeomorphism between them such
that corresponding points are within distance δ of each other, and corresponding tangent
vectors are within angle θ of each other almost everywhere.

Theorem 3.1. (Denne and Sullivan, 2008, Theorem 4.2) Suppose Γ1 is a knotted graph of
finite total curvature and ε > 0 is given. Then there exists δ > 0 such that any (rectifiable)
graph Γ2 which is (δ, π/8) − close to Γ1 is ambient isotopic to Γ1, via an isotopy which
moves no point by more than ε.

The tangent vectors of the Bézier curves and their control polygons are well defined except
at possibly finitely many points. The homeomorphism between the knotted control polygon
and knotted Bézier curve will be the natural one matching points defined at the same
parametric values over [0, 2π]. The PL knots considered will have finite total curvature.
The result that every compact connected set which has finite length is rectifiable David
and Semmes (1993) is directly applicable to the curves considered.

There is pervasive interest in computer graphics in convergence properties between Bézier
curves and their PL approximations Piegl and Tiller (1997), motivating the general con-
vergence considered here for collinear insertion. There are supportive techniques already
available for Bézier curves, as summarized briefly here.

The derivative of B is a Bézier curve Farin (1990), with control points n ∗∆Pi, in terms of
the forward difference operator, denoted by

∆Pi = Pi+1 − Pi, i = 0, . . . , n− 1.
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The second iterated forward difference operator is defined similarly as

∆2Pi = Pi+2 − 2Pi+1 + Pi.

Point wise convergence in distance under j collinear insertions has been shown Li et al.
(2015). Bounds will be shown on the rate of convergence for collinear insertion by adapting
a previously published inequality Nairn et al. (1999). Each control point of B is an ordered
triple (x, y, z) ∈ R3.. Let ∆2P

x denote the second iterated forward difference taken over
the x coordinate (with similarly definitions regarding the y and z coordinates). Then,
∆2P

x is a vector having n− 2 entries and the usual 1-norm is indicated by ‖∆2P
x‖1. Let

‖∆2P‖1,M = max
w∈{x,y,z}

‖∆2P
w‖1.

The notation Nairn et al. (1999) of N1(n) and a related combinatorial upper bound appears
in the appendix of Section 6. The indicated adaptation was previously implicit Li et al.
(2015)but is explicated as

‖B(t)− P(t)‖∞,[0,1] ≤ N1(n) ∗ ‖∆2P‖1,M , (3.1)

leading directly to

‖B(j)(t)− P(j)(t)‖∞,[0,1] ≤ N1(2
jn) ∗ ‖∆2P

(j)‖1,M ≤ (n/(4
√
n ∗ 2j + 1))‖∆2P‖1,M . (3.2)

3.1. Distance Bounds: Curve and Hodograph

An upper bound on the distance between a hodograph and its control polygon is also
determined directly from Inequality 3.1. Let d

dt
B denote the derivative of B and d

dt
B is a

Bézier curve with control points of the form

n ∗ (Pi − Pi−1), i = 1, . . . , n− 1. (3.3)

Let H1, H2, . . . , Hn−1 be the control points of d
dt

B and let H be the associated control
polygon, leading to the inequality

‖ d

dt
B(t)−H(t)‖∞,[0,1] ≤ N1(n) ∗ ‖∆2H‖1,M . (3.4)

A slight refinement has been made on the right hand side of Inequality 3.4 in the use of
N1(n) in place of N1(n − 1), as N1 is a “ ... slowly growing function ...” Nairn et al.
(1999). The advantage of this minor replacement is to continue to evaluate N1 on n as
an even integer, where that convenience is justified in Section 6. While this increases the
upper bound, the increase is not substantive for theoretical convergence questions, though
a tighter upper bound may be valuable to consider on specific data.

For each j ∈ N ∪ {0}, let H(j) denote the control polygon for d
dt

B(j)(t). By definition,

∆2Hi+2 = n ∗ ((Pi+2 − Pi+1)− 2(Pi+1 − Pi) + (Pi+2 − Pi−1)),

which simplifies to
∆2Hi+2 = n ∗ (Pi+2 − 3Pi+1 + 3Pi − Pi−1). (3.5)
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Lemma 3.1. For each j ∈ N ∪ {0}, ‖∆2H
(j)‖1,M ≤ 2j−1‖∆2H‖1,M .

Proof: For each j, there are two important cases to consider for ∆2H
(j). Recall that the

distance between successive control points of P (j), is equal 2−j‖P` − P`−1‖, for ` = 1, . . . n.

Case 1 : The four points used in Equation 3.5 are collinear and ∆2H
(j)
i is zero over all

coordinates x, y, z.

Case 2 : Three of the four points in Equation 3.5 are collinear. If the first three points are
collinear, then ‖∆2H

(j)
i ‖ = 2−j ∗ n‖P`− P`−1‖ for some ` = 1, . . . n. If the last three points

are collinear, then the same value is obtained. Hence, in evaluation of the 1-norm for the
vector ∆2H(j), this term occurs twice for each `.

The conclusion from these two cases is that

‖∆2H(j)‖ = 2−(j−1)‖∆2H‖. 2

Applying Lemma 3.1 and Inequality 3.2 to the hodograph yields

‖ d

dt
B(j)(t)−H(j)(t)‖∞,[0,1] ≤ (n/(2

√
n ∗ 2j + 1)) ∗ 2−(j−1) ∗ ‖∆2H‖1,M . (3.6)

3.2. Bounding Angles Between Tangent Vectors

Inequality 3.6 provides a bound on distance between each point on the hodograph, d
dt

B(j)(t)
and the corresponding point H(j)(t) on the control polygon, which suffices as a bound
between corresponding tangent vectors.

For each non-negative integer j, there are 2jn+ 1 control points of P(j). Let k = 0, . . . , 2jn
and define a uniform parametrization of [0, 1] with P(j)(k/(2jn)) being the k-th control
point of P(j) and other points on the control polygon determined by linear interpolation.
Closed parametric subintervals are of the form [(k/(2jn), ((k + 1)/(2jn)]. The presence of
consecutive collinear control points has implications for the discrete derivative.

In Figure 1, the triangle depicts the subtraction of any two vectors, where upper case letters
denote angles, while lower case letters denote edges. Consider A relative to an upper bound
on ‖a‖, where the direction of the vector corresponding to edge ‖a‖ is unknown. The dotted
circle indicates the positions that this edge could assume. By symmetry, only the semi-
circle above the horizontal axis needs to be considered. When ‖a‖ < ‖b‖, angle A attains
its maximum when angle C is π/2, by elementary trigonometry.

Lemma 3.2. The maximum angle between tangent vectors of B(j) and P can be determined
over the shortest edge of P.

Proof: For each t ∈ [0, 1], consider d
dt

B(j)(t)−H(j)(t), with edge b in Figure 1 depicting

the tangent of P that corresponds to d
dt

B(j)(t).

If t is in an interval [(k/(2jn), ((k + 1)/(2jn)] which does not contain some i/n for any
i = 0, . . . , n, then b = n‖Pi+1−Pi‖, for some i = 0, . . . , n− 1. In the notation of Figure 1,
the maximum value for angle A will be given by arcsin(a/b).
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Figure 1: Upper Bound on Angle

Denote by λ the minimum length over all edges from P and let b be a tangent vector of
the form n ∗ (Pi − Pi−1), for some i = 1, . . . , n. The condition on the length of a is met by
choosing j such that the right hand side of Inequality 3.6 is less than nλ. 2

4. An Example

Following from Lemma 3.2 and Inequality 3.6 the values to satisfy Theorem 3.1 can be
determined with an integer m1 sufficient to achieve the distance bound of δ and with an
integer m2 sufficient to achieve the angular bound of π/8. Let M = max{m1,m2}, so that
for all j > M , B(j) is isotopic to P .
A detailed example follows on the control polygon Li et al. (2015)

(1.3076,−3.3320,−2.5072), (−1.3841, 4.6826, 0.9135), (−3.2983,−4.0567, 2.6862),

(−0.1233, 2.7683,−2.4636), (3.9080,−4.5334, 1.2264), (−3.9360,−0.4383,−0.9834),

(3.2182, 4.2961, 2.1125).

4.1. Empirically Determined Bounds

Figure 2 depicts the stick knot 41, successively followed by the Bézier curves of the unknot
from the 0th collinear insertion and of 41 from the 4th collinear insertion, as previously
proven Li et al. (2015). Figure 3 shows Iterations 1 - 3 of collinear insertion under pro-
jections that provide visual verification that each of the corresponding Bézier curves is the
unknot.

4.2. Theoretically Determined Bounds

To apply Theorem 3.1 note that P has finite total curvature.

The following narrative to compute δ is adapted from the source Denne and Sullivan (2008)
for the convenience of the reader. Select a finite number of points pj from P (including all
its control points) such that these points divide P into PL arcs αk, each of total curvature
less than π/8. Let ε = 1.0
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(a) Stick Knot 41 (b) 0th Iteration, 01 (c) 4th Iteration, 41

Figure 2: Stick Knot, 0th & 4th Collinear Insertions.

(a) 1st Iteration (b) 2nd Iteration (c) 3rd Iteration

Figure 3: Projections of Three Iterations of Collinear Insertion.

Let r1 be the minimum distance between any two arcs ak which are not incident to a
common pj (or the minimum distance between points pj, if this is smaller). Let

r2 = min(r1/2, ε/2).

Consider disjoint open balls Bj of radius r2 centered at the pj . Note that P \
⋃
Bj is a

compact union of disjoint arcs βk ⊂ αk. Let r3 be the minimum distance between any two
of these arcs βk

Let r4 = r3/6 and let δ = r4/3.

The values for P are summarized in Table 1.

Variable Value
ε 1.0000
r1 0.2576
r2 0.1288
r3 0.0576
r4 0.0096
δ 0.0032

Table 1: Computing δ.

The values for m1 and m2 discussed at the beginning of this section can now be calculated,
using n = 7, λ = 9.
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To obtain m1, use Inequality 3.2 and let δ = (n/(4
√
n ∗ 2j + 1)) ∗ ‖∆2P‖1,M . Let Ω1 =

‖∆2P‖1,M = 70.8, so that

m1 = dlog2((7Ω2
1)/(16δ2)− (1/7))e = 28.

There are two constraints on m2 in Lemma 3.2, with the first being relative to the shortest
tangent vector and the second in terms of the angular bound of π/8. The corresponding
number of iterations to meet those constraints will be denoted bym2T andm2A, respectively,
with m2 = max{m2T ,m2A}.
First, m2T is computed following Lemma 3.2 to have ‖a‖ < nλ, with ‖a‖ set equal to the
right hand side (RHS) of Inequality3.6 and Ω2 = ‖∆2H‖1,M = 779.0 to get

(n/(2 ∗
√
n ∗ 2j) ∗ 2−(j−1) ∗ Ω2 < nλ,

and
(Ω2/λ)2 < n23j + 22j,

to yield m2T = 4.

For m2A, again, set ‖a‖ equal to the RHS of Inequality3.6 and use arcsin(‖a‖/(nλ)) = π/8
to get m2A = 5. It is then clear, that m2 = 5 and M = 28.

The difference between the theoretically determined sufficient condition of 28 iterations to
achieve isotopic equivalence versus the visual inspection that 4 iterations suffice present
opportunities to explore tightness criteria. These future investigations will be enabled by
previously developed knot visualization software Marsh and Peters (2008). It is of interest
to note that the empirically determined optimal value of 4 iterations for the example is
exactly met by the tangency condition, with m2T = 4, and is nearly met by the angular
condition, with m2A = 5. This directs initial attention to considering why the distance
criteria yield such a larger number of 28, while also appreciating that the tangency and
angular conditions for this example might just be particularly well-behaved.

5. Conclusion and Future Work

For synchronous visualizations of writhing molecules, a cautionary example was previously
presented of different knot types between a polynomial curve and its rendering. Further
study of the isotopy constraints on that example prompted these generalizations for a se-
quence Bézier curves converging to a given stick knot. This broader theory will further
inform the design of visualization software for molecular simulations. Beyond that ap-
plication, this work lays the foundation for mathematical visualization software for the
experimental investigation of important theoretical relationships between stick and smooth
knots, where much remains to be discovered. A particular future emphasis will be upon
whether isotopic approximations can occur earlier in the converging sequence than given
by the sufficient a prior bounds presented here. Any discovery of more aggressive bounds
will likely rely upon computational experiments to discover criteria for tight bounds.
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6. Appendix: Supportive Combinatorial Relations

Let N denote the natural numbers {1, 2, 3, . . .}. For k ∈ N, consider the central binomial
coefficient Chowdhury et al. (2014), (

2k
k

)
.

Lemma 6.1. For k ∈ N, (
2k
k

)
≤ 4k

√
2k + 1

.

Proof: The key to the proof has informally been attributed to P. Erdos Chowdhury et al.
(2014) . 2

The following notation has previously appeared Nairn et al. (1999) and is central to the
convergence results. Note that presenting the definition purely for even arguments is suf-
ficient here, since the colliear insertion process always doubles the degree of the previous
Bézier curve. For k ∈ N , let

N1(2k) =

(
2k
k

)
2k

22k+2
.

Lemma 6.2. For k ∈ N ,

N1(2k) <
k

2
√

2k + 1
.

Proof: The short proof Li et al. (2015) is repeated here for the convenience of the reader.
Invoke Lemma 6.1 on

N1(2k) =

(
2k
k

)
2k

22k+2
<

4k

√
2k + 1

2k

4k+1
=

k

2
√

2k + 1
. 2
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Chazal, F., Cohen-Steiner, D., Mérigot, Q., 2011. Geometric inference for probability mea-
sures. Foundations of Computational Mathematics 11, 733–751.

Chowdhury, M. B. R., Komj́th, P., Speyer, D., 2014. Upper limit on the
central binomial coefficient. http://mathoverflow.net/questions/133732/

upper-limit-on-the-central-binomial-coefficient.

David, G., Semmes, S., 1993. Analysis of and on uniformly rectifiable sets. Vol. 38. American
Mathematical Soc.

Denne, E., Sullivan, J. M., 2008. Convergence and isotopy type for graphs of finite total
curvature. In: Bobenko, A. I., Sullivan, J. M., Schröder, P., Ziegler, G. M. (Eds.), Discrete
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