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Abstract

For an arbitrary degree Bézier curve B, we first establish sufficient conditions
for its control polygon to become homeomorphic to B via subdivision. This
is extended to show a subdivided control polygon that is ambient isotopic to
B. We provide closed-form formulas to compute the corresponding number of
iterations for equivalence under homeomorphism and ambient isotopy. The
development of these a priori values was motivated by application to high
performance computing (HPC), where providing estimates of total run time
is important for scheduling.
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1. Introduction

Preserving ambient isotopic equivalence between an initial geometric model
and its approximation is of contemporary interest in geometric modeling
[1, 2, 4, 23, 27], with the focus here being on Bézier curves.

A Bézier curve is characterized by an indexed set of points, which form
a piecewise linear (PL) approximation of the curve, called a control poly-
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gon (Definition 2.1). We consider the special class of simple2 Bézier curves,
because we are interested in knots3.

1.1. Computational Topology Issues

The motivation for this theory was the scaling of dynamic visualization
to HPC applications. For models of complex molecules [13], as found in the
Protein Data Bank (PDB), Bézier curve models of these molecular backbones
could be of arbitrarily high degree, but the existing literature on relevant am-
bient isotopic approximation was limited to degree 3 [27]. A formally proven
guarantee that the graphics be ambient isotopic to the Bézier curve is es-
sential. A simulation of molecular writhing is run on a high performance
computing architecture, generating terabytes of floating point data. The
output of all this data is the significant bottleneck. However, small portions
of the data, covering seconds to minutes of the simulation can be offloaded
within an acceptably minimal time lag to enable nearly synchronous dynamic
visualization for informed decisions in computational steering. The appro-
priately high threshold here is that the dynamic visualization should not lead
to inappropriate abortion of a simulation, based upon a misrepresentation of
the isotopty type of the molecule.

There may be substantial topological differences between Bézier curves
and their control polygons. It has long been known that Bézier curves and
their control polygons are not necessarily homeomorphic. There are examples
in the literature showing self-intersecting Bézier curves with simple control
polygons or simple Bézier curves with self-intersecting control polygons [20,
31, 33]. Bézier curves and their control polygons are not necessarily ambient
isotopic. There is an example showing an unknotted Bézier curve with a
knotted control polygon [5, 26]. Examples of a knotted Bézier curve with an
unknotted control polygon have also been given [20, 34].

The de Casteljau algorithm [12] is a subdivision algorithm associated to
Bézier curves which recursively generates control polygons more closely ap-
proximating the curve under Hausdorff distance [29]. It is known that the
convergence of the subdivided control polygon to its Bézier curve is expo-
nential under Hausdorff distance [15, 30]. As a fundamental lemma, we show

2A curve is said to be simple if it is non-self-intersecting, exclusive of common end
points of a closed curve and junction points in composite Bézier curves.

3A knot is a simple closed curve.
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that the convergence of the exterior angles of the subdivided control poly-
gon to 0 is also exponential for simple, regular, C1, composite Bézier curves4

in R3. Furthermore, we derive closed-form formulas to compute sufficient
numbers of subdivision iterations to achieve homeomorphism and ambient
isotopy, respectively.

1.2. Application to HPC Molecular Simulations

A brief overview of the relevant computational science issues follows.
Prior knowledge of the run time of any job is important to estimate HPC time
allocation and the sufficient number of iterations presented here will permit
computational scientists to produce reliable estimates. With often more than
100,000 processors available, there are many creative, ad hoc parallelization
techniques to achieve acceptable performance for subdivision. The initial
ambient isotopic approximation can be done on a static geometric model,
before the simulation begins. The next crucial experimental question is, “As
the spline perturbs, how long can the original PL approximation be per-
turbed to maintain ambient isotopic equivalence?” Recently published work
[7] provides some initial insight. If these time periods are sufficient for the
amount of data initially output, then the cycle would begin again, but this
remains to be verified experimentally. The emphasis here is that the theory
proven here provides a strong foundation to pursue these experiments with
confidence that subdivision will not become a time sink. As a contrast, in
absence of this theory, the subdivision might be run recursively, with no prior
knowledge of time to completion. The classical pipe surfaces was invoked as
the boundary of a tubular neighborhood as an algorithmic constraint for a PL
ambient isotopic approximation of a static spline curve [22]. That static view
has been extended so that many perturbations of the PL approximant within
the pipe surface continue to maintain ambient isotopic equivalence [13] and
is applied here. Once the dynamic visualization begins, the containtment of
the PL graphics within a pipe surface of constant radius enables run time
warning messages, as the geometry approaches the boundary of this tubular
neighborhood, increasing the prospect for a significant topological change.
This is far superior to prevailing animation techniques that concentrate on
self-intersection analysis on a per frame basis, which are known to be error
prone [13, 17].

4These Bézier curves are necessarily compact, as continuous images of [0, 1].
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The availability of hundreds of thousands of processors noted in the pre-
ceding paragraph is common today. The number of processors is rapidly
growing to millions, so moving simulation data results will become an issue
of increasing greater concern. Computational steering and in-situ visualiza-
tion will become ever more important. The theoretical results presented here
provide the foundation to ensure that the perturbed PL graphics faithfully
represent the underlying molecular science. The resultant algorithms are ex-
pected to scale gracefully. In the absence of this theory, an inappropriate
steering decision – based upon a flawed visual analysis, could lead to lost
results. These flawed decisions are expensive, motivating this theory as the
primary basis for properly informed decisions.

2. Bézier Curves: Definitions and Assumptions

Some basic background on Bézier curves is provided.

Definition 2.1. A parameterized Bézier curve of degree n with control
points pj ∈ R3 is defined by

n∑
j=0

Bj,n(t)pj, t ∈ [0, 1],

where Bj,n (t) =

(
n
j

)
tj(1 − t)n−j and the PL curve given by the ordered set

of points {p0, p1, . . . , pn} is called its control polygon and is denoted by P .
When p0 = pn, the control polygon is closed. Otherwise when p0 6= pn, it is
open.

In order to avoid technical considerations and to simplify the exposition,
the class of Bézier curves considered will be restricted to those where the
first derivative never vanishes.

Definition 2.2. A differentiable curve is said to be regular if its first deriva-
tive never vanishes.

The Bézier curve of Definition 2.1 is typically called a single segment
Bézier curve, while a composite Bézier curve is created by joining a sequence
of two or more single segment open Bézier curves at their common end points.
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Throughout the paper, we use B to denote a simple, regular,
C1, composite Bézier curve

B : [0, 1]→ R3,

defined by a control polygon with distinct consecutive vertices,
except that for a closed Bézier curve, the end points are the same.

Beginning with Theorem 6.2 the hypothesis of C2 is added for B, but this
is because the C2 condition was previously implicitly used in establishing a
non-singular pipe surface [22] as the boundary of a tubular neighborhood.
This dependency continues for other results which use this non-singular pipe.
This non-singular pipe surface is merely a convenience to ease the exposition.
There are many cases where the C1 assumption will suffice for an alternative
tubular neighborhood to replace that created with the indicated pipe surface
as its boundary. Some creative alternatives could rely upon previous ‘snow
cone’ constructions [14], but this is left as a subject of future work. We note
that our use of Fenchel’s Theorem 4.1 in the proof of Lemma 6.2 relies only
on the PL case.

3. Related Work

Exponential convergence in Hausdorff distance of the subdivided control
polygon to its Bézier curve under subdivision has previously been established
[15, 30]. The discrete derivatives of the control polygons were proven to
converge exponentially to the derivatives of the Bézier curve by showing that
discrete differentiation commutes with subdivision [28]. The convergence of
the exterior angles of the subdivided control polygons to 0 has been widely
assumed, both in the literature [16] and informally, but we were unable to
find any proof in the literature. We prove this angular convergence, using
derivatives.

The existence of homeomorphic equivalence between a sufficiently fine
subdivided control polygon and its Bézier curve was given [31] by invoking
the hodograph5, but that proof provided no expression for the number of sub-
division iterations. We provide a constructive geometric proof for specified

5The derivative of a Bézier curve is also expressed as a Bézier curve, known as the
hodograph [12].
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numbers of subdivision iterations to produce a control polygon homeomor-
phic to a given Bézier curve. We then extend to a similar result for ambient
isotopy.

The a priori determination of the number of iterations was motivated
by experimental performance studies for dynamic visualization in molecular
simulations, where the molecules are modeled as knots. Homeomorphic ap-
proximation of composite Bézier curves was established [9] by algorithmic
techniques that do not directly rely upon the de Casteljau algorithm, but
include techniques related to “significant points”. The self-intersection of
curves and surfaces is fundamental within geometric modeling [3, 32]. Preser-
vation of topology was established when the control points of parametric
patches are perturbed, by designating conditions under which perturbations
yield no self-intersections of patches [4].

Our techniques rely upon a tubular neighborhood for a Bézier curve,
with the boundary of the tubular neighborhood being a non-singular pipe
surface. Pipe surfaces have been studied since the 19th century [25], but
the presentation here follows a contemporary source [22]. These authors
perform a thorough analysis and description of the end conditions of open
spline curves. The junction points of a Bézier curve are merely a special case
of that analysis.

Ambient isotopy is a stronger notion of equivalence than homeomorphism.
An earlier algorithm [14] establishes an isotopic approximation over a broad
class of parametric geometry, without establishing the number of iterations
needed. Other recent papers [6, 21] present algorithms to compute isotopic
PL approximation for 2D algebraic curves. Computational techniques for es-
tablishing isotopy and homotopy have been established regarding algorithms
for point-clouds by “distance-like functions” [8].

Ambient isotopy under subdivision was previously established [27] for 3D
Bézier curves of low degree (less than 4), where a crucial unknotting condition
was trivially established for these low degrees. The results presented here
extend to Bézier curves of arbitrary degree, by a more refined analysis of
avoiding knots locally within the PL approximation generated. The focus on
higher degree versions was motivated by applications in molecular simulation.

It was proved that for homeomorphic curves, if their distance and an-
gles between first derivatives are within given bounds, then these curves are
ambient isotopic [10]. We invoke this previous result.
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4. Mathematical Preliminaries

Mathematical definitions, notation and fundamental supportive results
are presented in this section. More specialized definitions will follow in ap-
propriate sections. The standard Euclidean norm will be denoted by || ||.

Definition 4.1. A C1 function, f , is C1,1 if its derivative, denoted by f ′ is
Lipshitz.

Lemma 4.1. The curve B is C1,1.

Proof: The proof relies upon B being C1 and invokes the Mean Value
Theorem, the definition of a single segment Bézier curve by a polynomial,
the differentiability of a polynomial and the existence of the maximum of
any continuous real valued function on a compact domain. The elementary
details are left to the reader. �

Definition 4.2. [29] Let X and Y be two non-empty subsets of a metric
space (M,d). The Hausdorff distance µ(X, Y ) is defined by

µ(X, Y ) := max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}.

Subdivision algorithms are fundamental for Bézier curves and a brief
overview is given here. Figure 1 shows the first step of the de Casteljau
algorithm with an input value of 1

2
on a single Bézier curve. For ease of

exposition, the de Casteljau algorithm with this value of 1
2

is assumed, but
other fractional values can be used with appropriate minor modifications to
the analyses presented. The initial control polygon P is used as input to
generate local PL approximations, P 1 and P 2, as Figure 1(b) shows. They
together form a new PL curve whose Hausdorff distance is closer to the curve
than that of P [12].

A summary is that subdivision proceeds by selecting the midpoint of
each edge of P and these midpoints are connected to create new edges, as
Figure 1(a) shows. Recursive creation and connection of midpoints continues
until a single edge is created, which is, in fact, tangent to the Bézier curve
[12]. The union of the edges from the final step then forms a new PL curve.
Termination is guaranteed since P has only finitely many edges.
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1

(a) Subdivision process

1

(b) P 1 and P 2

Figure 1: A subdivision with parameter 1
2

For a single segment curve, after i iterations6, the subdivision process
generates 2i PL sub-curves, each being a control polygon for part of the
original curve [12], which is a sub-control polygon7 (For simplicity, it will
be referred to as sub-polygon), denoted by P k for k = 1, 2, 3, . . . , 2i. Each
P k has n + 1 points and their union

⋃
k P

k forms a new PL curve that
converges in Hausdorff distance to approximate the original Bézier curve.
The Bézier curve defined by

⋃
k P

k is exactly the same Bézier curve defined
by the original control points {p0, p1, . . . , pn} [15]. So

⋃
k P

k is a new control
polygon of the Bézier curve. We will consistently just shorten

⋃
k Pk to Pi(t)

for the subdivided polygon after i iterations.
Exterior angles were defined [24] in the context of closed PL curves, but

are adapted here for both closed and open PL curves. Exterior angles unify
the concept of total curvature for curves that are PL or differentiable.

Definition 4.3. [24] The exterior angle between two oriented line seg-
ments, denoted as −−−→pj−1pj and −−−→pjpj+1, where pj−1 6= pj and pj 6= pj+1, is the
angle formed by −−−→pjpj+1 and the extension of −−−→pj−1pj. Let the measure of the
exterior angle be αj satisfying:

0 ≤ αj ≤ π.

Definition 4.4. Parametrize a curve γ(s) with arc length s on [0, `]. Then

its total curvature is
∫ `

0
||γ′′(s)|| ds.

6An iteration is a whole subdivision process that produces a new control polygon.
7Note that by the subdivision process, each sub-control polygon of a simple Bézier

curve is open.
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Total curvature can be defined for both C2 and PL curves. In both cases,
the total curvature is denoted by Tκ(·). The unified terminology is invoked
in Fenchel’s theorem, which is fundamental to the work presented here.

Definition 4.5. [24] Suppose that a PL curve in R3, denoted by Q, is defined
by an ordered set of points {q0, q1, . . . , qn} where qj 6= qj+1 for j = 0, 1, . . . , n−
1, then the total curvature of Q is the sum of the measures of all the
exterior angles.

Fenchel’s Theorem [11] presented below is applicable both to PL curves
and to differentiable curves.

Theorem 4.1. [11, Fenchel’s Theorem] The total curvature of any closed
curve is at least 2π, with equality holding if and only if the curve is planar
and convex.

Denote a PL curve with vertices {q0, q1, . . . , qn} by Q, and the uniform
parametrization [28] of Q over [0, 1] by l(Q)[0,1]. That is:

l(Q)[0,1]

(
j

n

)
= qj for j = 0, 1, · · · , n

and l(Q)[0,1](t) interpolates linearly between vertices.

Definition 4.6. First define discrete derivatives [28] at the parameters tj = j
n

,
where

l(Q)[0,1](tj) = qj, for j = 0, 1, · · · , n− 1.

Let

q′j = l′(Q)[0,1](tj) =
qj+1 − qj
tj+1 − tj

, for j = 0, 1, · · · , n− 1.

Denote Q′ = (q′0, q
′
1, . . . , q

′
n−1). Then define the discrete derivatives for

l(Q)[0,1] as:
l′(Q)[0,1] = l(Q′)[0,1].
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5. Angular Convergence under Subdivision

For simplicity of notation, use P0(t) to denote the original control polygon
before subdivision, which is uniformly parameterized, that is, P0(t) = l(P )[0,1].
Let M be the maximum of the distance between two consecutive vertices of
the first discrete derivative of P0(t). Similarly, we use P(t) to denote a sub-
divided control polygon, uniformly parametrized over [0, 1]. Let P ′(t) be the
corresponding discrete derivative. Let P(tj−1) and P(tj), for j = 1, 2, . . . , n,
be any consecutive vertices of P(t).

Lemma 5.1. For the curve B, we have

||P ′(tj)− P ′(tj−1)|| ≤
M

2i
.

Proof: It was proved that the discrete differentiation commutes with sub-
division [28, Lemma 4], so P ′ can be viewed as being obtained by subdividing
P ′0. But P ′0 is a control polygon of B′ [28, Lemma 6]. Another previous re-
sult [15, Lemma 2.5] showed that the distance between any two consecutive
vertices of a control polygon is bounded by M

2i . �

Theorem 5.1 (Angular Convergence). For B, the exterior angles of the
PL curves generated by subdivision converge uniformly to 0 at a rate of

O
(√

1
2i

)
.

Proof: Since B(t) is assumed to be regular and C1, the non-zero minimum
of ||B′(t)|| over the compact set [0,1] is attained. For brevity, the notations
of uj = P ′(tj), vj = P ′(tj−1) and α = αj are introduced. The convergence
of uj to B′(tj) [28] implies that ||uj|| has a positive lower bound (denoted by
λ), for the number of subdivision iterations, i, sufficiently large.

Lemma 5.1 gives that ||uj − vj|| → 0 as i → ∞ at a rate of O( 1
2i ). This

implies: ||uj|| − ||vj|| → 0 as i→∞ at a rate of O( 1
2i ).

Consider
1− cos(α) = 1− ujvj

||uj|| · ||vj||

=
||uj|| · ||vj|| − vjvj + vjvj − ujvj

||uj|| · ||vj||
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≤ ||uj|| − ||vj||
||uj||

+
||vj − uj||
||uj||

≤ ||uj|| − ||vj||
λ

+
||vj − uj||

λ
≤ 2||vj − uj||

λ
(1)

It follows from Lemma 5.1 that

1− cos(α) ≤ M

λ2i−1
. (2)

It follows from the continuity of arc cos that α converges to 0 as i→∞.
To obtain the convergence rate, taking the power series expansion of cos we
get

1− cos(α) ≥ α2

(
1

2
−
∣∣∣∣α2

4!
− α4

6!
+ · · ·

∣∣∣∣)
= α2

(
1

2
− α2

∣∣∣∣ 1

4!
− α2

6!
+ · · ·

∣∣∣∣) . (3)

Note that for 1 > α,

e = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+ · · · >

∣∣∣∣ 1

4!
− α2

6!
+ · · ·

∣∣∣∣ . (4)

Combining (3) and (4) we have,

1− cos(α) > α2

(
1

2
− α2e

)
.

For any τ ∈
(
0, 1

2

)
, sufficiently many subdivisions will guarantee that α is

small enough such that 1 > α and τ > α2e. Thus

1− cos(α) > α2

(
1

2
− α2e

)
> α2

(
1

2
− τ
)
> 0.

By (2) we have

α <

√
2M

λ(1
2
− τ)

√
1

2i
.

So α converges to 0 at a rate of O
(√

1
2i

)
. �
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6. Homeomorphic Control Polygons

We present sufficient conditions for a homeomorphism between a sub-
divided control polygon and B. We first establish a local homeomorphism
between a sub-polygon and the corresponding sub-curve of B, and then es-
tablish a global homeomorphism between the control polygon and B.

Lemma 6.1. [16, Angle criterion] Let Q be an open PL curve in R3. If
Tκ(Q) =

∑n−1
j=1 αj < π, then Q is simple.

Theorem 6.1. For B, there exists a sufficiently large value of i, such that
after i-many subdivisions, each of the sub-polygons generated as P k for k =
1, 2, 3, . . . , 2i will be simple.

Proof: The measures of the exterior angles of P k converge uniformly
to zero as i increases (Theorem 5.1). Each open P k has n edges. Denote
the n − 1 exterior angles of each P k by αkj , for j = 1, . . . , n − 1 and for
k = 1, 2, 3, . . . , 2i. Then there exists i sufficiently large such that

n−1∑
j=1

αkj < π,

for each k = 1, 2, 3, . . . , 2i. Use of Lemma 6.1 completes the proof. �

The proof techniques for homeomorphism rely upon the sub-polygons
to be pair wise disjoint, except at their common end points. Denote two
generated sub-polygons of B as

P = (p0, p1, . . . , pn) and Q = (q0, q1, . . . , qm).

Definition 6.1. The sub-polygons P and Q are said to be consecutive if
the last vertex pn of P is the first vertex q0 of Q, that is, pn = q0.

Remark 6.1. For B, the C2 assumption ensures that the segments −−−−→pn−1pn
and −−→q0q1 are collinear. The regularity assumption ensures that the exterior
angle can not be π. So the exterior angle at the common point is 0.

Lemma 6.2 extends to arbitrary degree Bézier curves from a previously
established result that was restricted to cubic Bézier curves [35], as used in
the proof of isotopy under subdivision for low-degree Bézier curves [27].
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⇧

p0

p1

p2

p3 q0
q1

q2

q3

1

Figure 2: Intersecting consecutive sub-polygons

Lemma 6.2. Let Π be the plane normal to a sub-polygon at its initial vertex.
If the total curvature of the sub-polygon is less than π

2
, then the initial vertex

is the only point where the plane intersects the sub-polygon.

Proof: Denote the sub-polygon as Q = (q0, q1, . . . , qm), where qj 6= qj+1,
j = 0, 1, . . . ,m− 1. Figure 2 shows an orthogonal projection of this 3D ge-
ometry in the case n = m = 3. Assume to the contrary that Π ∩Q contains
a point u where u 6= q0. Consider the closed polygon formed by vertices
{q0, . . . , u, q0}. Then by Theorem 4.1 we know that the total curvature of
the closed polygon is at least 2π. However, excluding the exterior angles at
q0 (which is π

2
), and the exterior angles at u (which is at most π by Defini-

tion 4.3), we still have at least π
2

left, which contradicts Tκ(Q) < π
2
. �

Lemma 6.3. Let w be a point of B where B is subdivided, that is, w is the
common point of two connected sub-polygons, and let Π be the plane normal
to B at w. Then there exists a subdivision of B such that the sub-polygon
ending at w and the sub-polygon beginning at w intersect Π only at the point
w.

Proof: The plane Π separates the space R3 into two disjoint open half-
spaces, denoted as H1 and H2, such that

H1 ∪ Π ∪ H2 = R3 and H1 ∩ H2 = ∅.
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By Remark 6.1, the exterior angle at w is 0.
Perform sufficiently many subdivisions so that the control polygon end-

ing at w, denoted by P , and the control polygon beginning at w, denoted
by Q, each have total curvature less than π

2
(Theorem 5.1). Therefore, by

Lemma 6.2 the only point where P or Q intersect Π is at w. �

This global homeomorphism will be proven by reliance upon pipe surfaces,
which are defined below.

Definition 6.2. The pipe surface of radius r of a parameterized curve
c(t), where t ∈ [0, 1] is given by

p(t, θ) = c(t) + r[cos(θ) n(t) + sin(θ) b(t)],

where θ ∈ [0, 2π] and n(t) and b(t) are, respectively, the normal and bi-
normal vectors at the point c(t), as given by the Frenet-Serret trihedron. The
curve c is called a spine curve.

For B and i subdivisions, with resulting sub-polygons P k for k = 1, . . . , 2i,
let Sr(B) be a pipe surface of radius r for B so that Sr(B) is non-self-
intersecting. Theorem 3.1 in [22] ensures the existence of such a non-self-
intersecting pipe surface. For each k = 1, . . . , 2i, denote

• the parameter of the initial point of P k by tk0, and that of the terminal
point by tkn

• the normal disc of radius r centered at B(t) as Dr(t),

• the union
⋃
t∈[tk0 ,t

k
n]Dr(t) by Γk, and designate it as a pipe section.

Theorem 6.2. If B is C2, then sufficiently many subdivisions will yield a
simple control polygon that is homeomorphic to B.

Proof: By Theorem 5.1, we can take ι1 subdivisions so that Tκ(P
k) < π/2,

for each sub-polygon P k. By Lemma 6.1, this choice of ι1 guarantees that
each P k is simple. By the convergence in Hausdorff distance under subdivi-
sion [30], we can take ι2 subdivisions such that the control polygon generated
by ι2 subdivision fits inside the non-singular pipe surface Sr(B) [22]. Choose
ι = max{ι1, ι2}. By Lemma 6.3, this choice of ι ensures that each P k fits

inside the corresponding Γk, so that the control polygon,
⋃2i

k=1 P
k, is simple,

which implies the homeomorphism. �

14



7. Ambient Isotopic Control Polygons

Ambient isotopy is an equivalence relation for knots. Knots can be mod-
eled by simple closed Bézier curves. In this section, we consider a closed
Bézier curve B, and derive the ambient isotopy following [10, Proposition
3.1]. We note that C1,1 was previously used [10], which is true for B by
Corollary 4.1. The stronger C2 assumption invoked, below, is to ensure the
singularity of the pipe surface, as previously noted in Section 2.

Theorem 7.1. If B is C2, then sufficiently many subdivisions will yield a
simple control polygon that is ambient isotopic to B.

Proof: It was proved [10, Proposition 3.1] that B and P are ambient
isotopic if:

(1) they are homeomorphic,

(2) ||B(t)− P(t)|| < r
2

(where r is the radius of a pipe surface), and

(3) maxt∈[0,1] θ(t) <
π
6

(where θ(t) is the angle between B′(t) and P ′(t)).

By Theorem 6.2, sufficiently many subdivisions will produce a homeo-
morphic P . Also, P(t) converges to B(t) [30] and P ′(t) converges to B′(t)
[28]. Therefore, the conclusion follows. �

8. Sufficient Subdivision Iterations

In this section, we shall establish closed-form formulas to compute suffi-
cient numbers of subdivisions for small exterior angles, homeomorphism and
ambient isotopy respectively.

From the previous sections we know that the homeomorphism is obtained
by subdivision based on two criteria:

(1) angular convergence; and

(2) convergence in distance.

So the speed of achieving these topological characteristics is determined by
the angular convergence rate and the convergence rate in distance which are
both exponential. Here, we further find closed-form formulas to compute
sufficient numbers of subdivision iterations to achieve these properties.
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Definition 8.1. Let P denote a control polygon of a Bézier curve, and let
Px denote an ordered list of all of x-coordinates of P (with similar meaning
given to Py for the y-coordinates and to Pz for the z-coordinates). Let

‖ 42Px ‖∞= max
0<m<n

|Pm−1,x − 2Pm,x + Pm+1,x|

be the maximum absolute second difference of the x-coordinates of control
points, (with similar meanings for the y and z coordinates) . Let

∆2P = (‖ 42Px ‖∞, ‖ 42Py ‖∞, ‖ 42Pz ‖∞),

(i.e.) a vector with 3 values.

Definition 8.2. The distance8 [30] between a Bézier curve B and the control
polygon P generated by i subdivisions is given by

max
t∈[0,1]

||P(t)− B(t)||.

Lemma 8.1. The distance between the Bézier curve and its control polygon
after ith-round subdivision has an upper bound of

1

22i
N∞(n)||∆2P ||, (5)

where

N∞(n) =
bn/2c · dn/2e

2n
.

Proof: A published lemma [30, Lemma 6.2] proves a similar result re-
stricted to scalar valued polynomials. We consider coordinate-wise and apply
this result to the x, y, and z coordinates respectively, so that the distance of
the x-coordinates of the Bézier curve and its control polygon after ith-round
subdivision is bounded by

1

22i
N∞(n) ‖ ∆2Px ‖∞,

8The distance here is as previously used [30]. Note that the distance is not smaller than
Fréchet distance. Our following results remain true if this distance is changed to Fréchet
distance.
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with similar expressions for the y and z coordinates. Taking the Euclidean
norm of the indicated three x, y and z bounds yields the upper bound given
by (5), an upper bound of the distance between the Bézier curve and its
control polygon after the ith subdivision. �

For convenience, denote the upper bound in distance as:

Bdist(i) :=
1

22i
N∞(n)||∆2P ||. (6)

Lemma 8.2. After i subdivision iterations, the distance between P ′ and B′
has an upper bound of B′dist(i), where

B′dist(i) :=
1

22i
N∞(n− 1)||∆2P

′||, (7)

and P ′ that consists of n− 1 control points is the control polygon of B′.

Proof: A control polygon’s derivative is again a control polygon of the
Bézier curve’s derivative [28, Lemma 6]. So by Lemma 8.1, we have

max
t∈[0,1]

||P ′(t)− B′(t)|| ≤ B′dist(i). (8)

�

8.1. Subdivision iterations for small exterior angles

Assume ν is a small measure of angle between 0 and π. We shall find how
many subdivisions will generate a control polygon such that the measure α
of each exterior angle satisfies9

α < ν. (9)

Recall the proof of angular convergence (Theorem 5.1). Consider two arbi-
trary consecutive derivatives uj = P ′(tj) and vj = P ′(tj−1) and the corre-
sponding exterior angle α. Recall that in Section 5 we had (1) and (2):

1− cos(α) ≤ 2||vj − uj||
||uj||

≤ M

||uj||2i−1
. (10)

9Later, in Sections 8.2 and 8.3, we shall see that the size of ν depends on the degree n
of a Bézier curve.
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Let σ = min{||B′(t)|| : t ∈ [0, 1]}. The regularity of B ensures that
σ > 0 and the continuity of B′ on the compact interval [0, 1] ensures that the
minimum exists. It follows from (8) that

||B′(tj)|| − ||uj|| ≤ B′dist(i).

Solving the inequality we get

||uj|| ≥ ||B′(tj)|| −B′dist(i) ≥ σ −B′dist(i).

In order to have uj 6= 0, it is sufficient to perform enough subdivisions such
that

||uj|| ≥ σ −B′dist(i) > 0,

that is B′dist(i) < σ. By the definition of B′dist(i), given by (7), we set,

1

22i
N∞(n− 1) ‖ 42P

′ ‖< σ.

Therefore for B′dist(i) < σ, it suffices to have10

i >
1

2
log

(
N∞(n− 1) ‖ 42P

′ ‖
σ

)
= N1. (11)

After the i subdivision iterations for i > N1, B
′
dist(i) < B′dist(N1), because

B′dist(i) is a strictly decreasing function. So it follows from (10) that whenever
i > N1,

1− cos(α) ≤ M

2i−1(σ −B′dist(i))
.

To obtain α < ν, it suffices to have that

1− cos(α) < 1− cos(ν).

Now choose i large enough so that

1− cos(α) ≤ M

2i−1(σ −B′dist(N1))
< 1− cos(ν). (12)

10Throughout this paper, we use log for log2.
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The second inequality of (12) implies that

i > log

(
2M

(1− cos(ν))(σ −B′dist(N1))

)
.

To simplify this expression, let

f(ν) =
2M

(1− cos(ν))(σ −B′dist(N1))
. (13)

Then, we have
i > log(f(ν)).

Theorem 8.1. Given any ν > 0, consider the integer N(ν) defined by

N(ν) = dmax{N1, log(f(ν))}e (14)

where N1, and f(ν) are given by (11) and (13) respectively. If i > N(ν),
then each exterior angle is less than ν.

Proof: It follows from the definitions of N1 and f(ν) and the above
analysis. �

It is worth noting that N is a logarithm depending on several parameters
such as σ, N∞(n) and 42P

′ as well as the variable ν.

8.2. Subdivision iterations for homeomorphism

For a regular simple Bézier curve B of degree 1 or 2, the control polygon
is trivially11 ambient isotopic to B. We consider n ≥ 3.

Given any ν > 0, Theorem 8.1 shows that there exists an integer N(ν),
such that each exterior angle is less than ν after N(ν) subdivisions. Further-
more, there is an explicit closed formula to compute N(ν).

Theorem 8.2. There exists a positive integer, N( π
n−1

) for n > 2, where
N( π

n−1
) is defined by (14), such that after dN( π

n−1
)e subdivisions, each sub-

polygon will be simple.

11For degree 1, both the curve and the polygon are either a point or a line segment.
For degree 2, there are three points. The curve and the polygon are planar and open
(otherwise the curve is not regular).
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Proof: By Theorem 8.1, after N( π
n−1

) subdivisions, each exterior angle is
less than π

n−1
. Since each sub-polygon has a n− 1 exterior angles, the total

curvature of each sub-polygon is less than π. Lemma 6.1 implies that this is
a sufficient condition for each sub-polygon being simple. �

Define N ′(r) by

N ′(r) =
1

2
log

(
N∞(n)||∆2P ||

r

)
, (15)

where r is the radius of a non-self-intersecting pipe surface for B. By (6) and
(15), we have Bdist(i) < r whenever i > N ′(r).

Lemma 8.3. The control polygon generated by more than N ′(r) subdivision
iterations, where N ′(r) is given by (15), satisfies

max
t∈[0,1]

||B(t)− P(t)|| < r,

and hence fits inside the pipe surface of radius r for B.

Proof: By Lemma 8.1, maxt∈[0,1] ||B(t) − P(t)|| ≤ Bdist(i). Then this
lemma follows from the definition of N ′(r) given by (15). �

While Theorem 8.2 addresses each sub-polygon, it is of interest to ensure
that the union of all these sub-polygons is also simple. In Theorem 8.3, that
union is the ‘control polygon’, as the result of multiple subdivisions.

Theorem 8.3. Set

N̂ = max{N
(

π

2(n− 1)

)
, N ′(r)},

where N(ν) is defined by (14) and N ′(r) is given by (15). After dN̂e or more
subdivisions, the control polygon will be homeomorphic.

Proof: The inequality N ≥ N ′(r) implies that the control polygon
generated after the N ’th subdivision lies inside the pipe. The inequality

N ≥ N
(

π
2(n−1)

)
ensures that the total curvature of its each sub-polygon is

less than π
2
. These two conditions are sufficient conditions for the control

polygon being simple (Theorem 6.2). �
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8.3. Subdivision iterations for ambient isotopy

Recall, by Theorem 7.1, that a a subdivided control polygon P that is
homeomorphic to its Bézier curve B will also be ambient isotopic toB if

||B(t)− P(t)|| < r

2
and max

t∈[0,1]
θ(t) <

π

6
,

where θ(t) is the angle between B′(t) and P ′(t). We may produce N ′
(
r
2

)
subdivisions to satisfy the first condition (Lemma 8.3). To guarantee the
second condition, we consider:

1− cos(θ(t)) = 1− B′(t) · P ′(t)
||B′(t)|| · ||P ′(t)||

=
||B′(t)|| · ||P ′(t)|| − P ′(t) · P ′(t) + P ′(t) · P ′(t)− B′(t) · P ′(t)

||B′(t)|| · ||P ′(t)||

≤ ||B
′(t)|| − ||P ′(t)||
||B′(t)||

+
||B′(t)− P ′(t)||
||B′(t)||

≤ 2||B′(t)− P ′(t)||
σ

,

where σ = min{||B′(t)|| : t ∈ [0, 1]} (Recall σ > 0.) From (8)

max
t∈[0,1]

||B′(t)− P ′(t)|| ≤ B′dist(i),

we have

1− cos(θ(t)) ≤ 2B′dist(i)

σ
.

To have θ(t) < π
6
, it suffices to set

2B′dist(i)

σ
< 1− cos(

π

6
) = 1−

√
3

2
.

By Equality 7,

B′dist(i) :=
1

22i
N∞(n− 1)||∆2P

′||,

we get

i ≥ 1

2
log

(
2N∞(n− 1)||∆2P

′||
(1−

√
3

2
)σ

)
= N2. (16)

So N2 subdivision iterations will guarantee the second condition.
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Theorem 8.4. Set

N∗ = max{N
(

π

2(n− 1)

)
, N ′

(r
2

)
, N2},

where N,N ′, N2 are given by (14), (15) and (16) respectively. After dN∗e
or more subdivisions, the control polygon P will be ambient isotopic to the
Bézier curve B.

Proof: The values N
(

π
2(n−1)

)
and N ′( r

2
) are used to obtain a homeomor-

phism, by Theorem 8.3. And then N2 is used to further obtain an ambient
isotopy. �

Remark 8.1. Note that N
(

π
2(n−1)

)
= max{N1, log f( π

2(n−1)
)}. Compar-

ing N1 given by (11) and N2 given by (16), we get that N2 < N1 + 2.
By (15) we also have N ′

(
r
2

)
< N ′(r) + 1. So N∗ < N̂ + 2. (Here,

N̂ = max{N
(

π
2(n−1)

)
, N ′(r)} is a sufficient number of subdivisions to guar-

antee homeomorphism.) So after a homeomorphism based on Theorem 8.3
is attained, no more than 2 additional subdivision iterations will be used to
produce the ambient isotopy12.

9. Future Work

The results here are restricted to uniform subdivision. Adaptive subdi-
vision may well be appropriate and the methods presented here would form
the basis for extension to adaptive methods, where different tubular neigh-
borhoods would be considered. Similarly, as expressed in Section 2, more
aggressive tubular neighborhoods may suffice for curves that are not C2.
It appears premature to pursue these enhancements for this application, as
there will be additional local geometric information available indicating a

12The dissertation work [18] of the first author adopted an alternative, more explicit
way to construct the ambient isotopy, with iteration of max{N( π2n ), N ′(r)}. It was shown

[18, Remark 4.2.7] that N( π2n ) < N
(

π
2(n−1)

)
+ 1, so that no more than 1 additional

subdivision iteration would be used to produce the ambient isotopy after a homeomorphism
is attained from Theorem 8.3. However, the method here has advantages because of its
direct use of subdivision versus specialized techniques.
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likely impending topological change which may lead to more direct and effi-
cient options to zoom into that area for a purely local analysis.

The question of tightness13 is a question of significant theoretical and
practical interest. These authors see that investigation as beyond the scope
of the present work, particularly as they conjecture that proving rigorous
tightness bounds could be difficult. Support for that conjecture is based
upon the subtlety of published constructions regarding topological properties
of knotted splines [5, 19, 34].

10. Conclusion

We first proved the exterior angles of control polygons converge expo-
nentially to zero under subdivision. We establish sufficient conditions for
subdivision to produce a control polygon ambient isotopic to a Bézier curve,
with a priori determination of a sufficient number of subdivision iterations.
These results are being applied in computer animation, particularly for dy-
namic visualization of molecular simulations. The theorems given provide
consistency and rigor to replace previously ad hoc animation techniques that
were error prone by focusing only on one frame at a time. This examination
is necessarily at a discrete point in time, whereas the analysis here is over
the continuum of a time interval.
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G. M. Ziegler, editors, Discrete Differential Geometry, pages 163–174.
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