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Abstract

New computational topology techniques are presented for surface reconstruction of 2-manifolds with boundary, while rigorous
proofs have previously been limited to surfaces without boundary. This is done by an intermediate construction of the envelope
(as defined herein) of the original surface. For any compact C2-manifold M embedded in R3, it is shown that its envelope is C1,1.
Then it is shown that there exists a piecewise linear (PL) subset of the reconstruction of the envelope that is ambient isotopic to M ,
whenever M is orientable. The emphasis of this paper is upon the formal mathematical proofs needed for these extensions. (Practical
application examples have already been published in a companion paper.) Possible extensions to non-orientable manifolds are also
discussed. The mathematical exposition relies heavily on known techniques from differential geometry and topology, but the specific
new proofs are intended to be sufficiently specialized to prompt further algorithmic discoveries.
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Fig. 1. Stadium curve.

1. Introduction and motivation

Several recent approaches to topology-preserving surface approximation have been restricted to C2 2-manifolds
without boundary [2,4,5,9,22]. Generalizations are presented here to:
• those 2-manifolds with boundary which are C2, and
• those 2-manifolds without boundary which are merely C1,1 (see below).

Surface reconstruction is a topic of current interest in computer science and industrial communities. The basic issue
is the creation of algorithms for generating an approximating surface from a discrete set of sample points of a surface.
For surface reconstruction, the sampled points should also explicitly be points of a piecewise linear (PL) output surface.
More generally, surface approximations need not be PL and the sampled points need not lie on the output surface.
In both cases, it is desirable to have upper bounds on the approximation and to have guarantees of topological equivalence
between the original and output surfaces.

The theory presented here is a fundamental step to creating algorithms for reconstruction of surfaces with boundary
[9], with provable topological characteristics and error bounds for the output surface. A recently published paper by
these authors also shows applications of the theory presented here [1]. The main theorem 6 is now stated to motivate
the remainder of the paper, with the proof appearing in Section 6.

Theorem 1.1. If M is a compact, C2, orientable 2-manifold with boundary, with M embedded in R3, then there exists
a PL ambient isotopic approximation of M , which can be made arbitrarily close to M .

Our development will rely upon hypotheses of C1,1-continuity, so that definition is provided below, whereas other
standard terminology from differential geometry and topology are provided for the reader’s reference in the Appendix
[13,14]. This perspective on weaker differentiability assumptions leads to three new valuable insights for the develop-
ment and use of surface reconstruction algorithms:
• The proofs on manifolds with boundary hold promise for provably correct algorithms on these difficult cases.

(Experimental algorithmic results are discussed elsewhere [1].)
• The generalizations presented for this larger admissibility class of C1,1-surfaces can be used for the construction of

data filters to preclude inadmissable input.
• An example on a Möbius strip shows potentional extensions to non-orientable surfaces, versus typical assumptions

about orientability within the computer science literature.

Definition 1.1. A real-valued function f , defined in an open subset U of R3, is said to be a C1,1 function if its gradient
∇f is Lipschitz continuous in U .

Definition 1.2. An embedded manifold (M, f ) is C1,1 if f (M), is locally given as the graph of a bivariate, real-valued
C1,1 function.

The well-known stadium curves, as illustrated in Fig. 1 are C1,1 but not C2 and these easily generalize to surface
examples.

6 The theorem is stated explicitly for manifolds with boundary, as the case of manifolds without boundary was previously proven [5]. However,
the proof given here also works for manifolds without boundary, so the theorem given here can be understood to be inclusive of both those cases.
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2. Related work

There are several recent publications [2,4,5,9] with an emphasis upon topological guarantees for surface reconstruc-
tion. This paper presents significant theoretical extensions beyond that cited literature, as noted in the previous section.
Furthermore, examples showing the power of these theoretical extensions are published elsewhere by these authors
[1] and the interested reader is referred there for further details. The theoretical concerns in providing topological
guarantees for surface approximations near boundaries have been presented in the literature [3,9,12] within the context
of approximants created during surface reconstruction.

The value in preferring ambient isotopy for topological equivalence [5,22] versus the more traditional equivalence
by homeomorphism [24] has previously been presented [5,22] and the reader is referred to those papers for formal
definitions.

Basic notions from differential topology and geometry are summarized in the Appendix [13,14] and readers familiar
with this material may use it primarily as a reference for the notation that appears in the rest of the paper.

3. Proof overview and definition of the envelope

Remark 3.1. All surfaces are assumed to be compact 2-manifolds embedded within R3.

An overview of the primary computational topology technique is now given. For a C2-manifold, M , with boundary, it
is shown that a C1,1-manifold without boundary can be constructed arbitrarily close to M . By extensions presented here,
this C1,1-manifold is admissable input to present surface reconstruction algorithms. It is then shown that a mapping
from a subset of the reconstruction of the C1,1-manifold is ambient isotopic to M . Furthermore, it is shown that the
medial axis [5] of the C1,1-manifold is equal to M and this aspect is exploited in preliminary experimental examples
presented here and in our companion paper [1]. Existing algorithms can also produce approximations to the medial
axis, but there remain open issues regarding topological guarantees, numerical properties and acceptable performance
of those medial axis approximation algorithms—all of which lie beyond the scope of the current work, but are being
considered within the broader research community [2,25].

The purpose of the rest of this section is to define a new surface that can be created from M , which we call the
envelope of M . Some properties of the envelope are then proven. These proofs rely upon the use of boundary collars
[14] as well as upon an upper bound between M and its envelope, to ensure that the resulting envelope will not be
self-intersecting or degenerate. Let M be a surface with boundary. Then we have from the definition:
(1) �M is a disjoint union of closed curves c1, . . . , cl , each of which is diffeomorphic to the unit circle S1.
(2) Along each cj , 1�j � l, we can attach a collar of the form cj × [0, 2�j ), for some positive number �j , so that the

topological space Mj = M ∪ (cj × [0, 2�j )) (where Mj is defined under the quotient map that identifies cj and
cj × 0 in the natural way) is a surface with the same degree of differentiability as M . The surface Mj contains M

and Mj now has the previous boundary component in its interior. Thus, successive attachments of collars along all
boundary components produce an open surface

M̃ = M ∪
( ⋃

1� j � l

(cj × [0, 2�j ))

)
.

M̃ contains M as a proper subset and �M̃ = ∅. Furthermore, we can choose �j , 1�j � l, in such a way that the
embedding f of M can be extended to an embedding f̃ of M̃ . This means the pair (M̃, f̃ ) is a surface in R3 which
extends the original surface (M, f ).

For technical reasons within the proofs, we introduce a new surface M̂ with boundary �M̂ given by M̂ = M̃ −⋃l
j=1(cj × (�j , 2�j )). We note here that the minimal positive critical values of the global energy function G defined

in M̂ (see Appendix) are less than or equal to that in M .
With respect to the induced metric in M̃ from R3, consider a unit normal field � to M̃ . The shape operator A� of

M̃ is given as the tangential component of the directional derivative of �; namely, f̃∗(A�(X)) = −DX�, which is
the directional derivative of � in the x-direction. The operator D is also called the covariant derivative in differential
geometry (or often the standard Riemannian connection).
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Let ĉ denote the smallest positive critical value of Ĝ, the natural extension of G to M̂ × M̂ , where ĉ is less than the
minimal critical value for G. Also, denote by � = maxx∈M {|K1(x)|, |K2(x)|}, where Ki(x), i = 1, 2 are the principal

curvatures at x ∈ M . Now denote by �̂ the number defined to be max
x∈M̂

{K̂1(x)|, |K̂2(x)|}, where K̂i(x), i = 1, 2

are the principal curvatures at x ∈ M̂ . As noted before these are at least continuous in M and M̂ , respectively.

Then �� �̂. Since M̂ is compact, the absolute values of these quantities attain the absolute extrema.

Definition 3.1. Set �̂ = 1
2 min{ĉ, 1/�̂}.

Note here that we use the convention 1/� = +∞ when � = 0 without loss of generality. Also note that it is well
known that M is a part of a plane if the principal curvatures are zero everywhere in M . We may then exclude this case
since an ambient isotopy of such a set can readily be constructed. Hence, we assume �̂ to be a finite positive number.

We introduce a compact closed surface called the r-envelope of M as follows. Let ci, 1� i�n be the boundary
curves of M . We first define a surface Pr(ci) about ci, 1� i�n (each such surface is called a pipe surface [17]).
A specific parametrization of these surfaces is given for later use.

Let c = c(t), t ∈ [0, l] be a regular closed space curve in R3. Further assume that the curve has no self-
intersection and that it is parametrized by its arc length; hence, l is the total arc length of the curve. For a sufficiently
small r > 0,

Pr(s, t) = c(t) + r�(t) cos s + r�(t) sin s, 0� t < l, 0�s < 2�

gives rise to a closed surface in R3 parametrized by (s, t), where �(t) and �(t) form an orthonormal frame normal
to the curve. For example, they can be the pair consisting of the normal and binormal of the curve [20]. We have
Pr(s, t) = Pr(ci) when c = ci . One may consider (t, s) as its coordinates (see the remark below). The tangent plane
to this surface at (t, s) is spanned by the following two tangent vectors:

�

�t
= �(c(t) + r�(t) cos s + r�(t) sin s)

�t
= dc(t)

dt
+ r

d�

dt
cos s + r

d�

dt
sin s,

�

�s
= (�c(t) + r�(t) cos s + r�(t) sin s)

�s
= −r�(t) sin s + r�(t) cos s.

One can readily see from the above expressions that these tangent vectors are linearly independent for sufficiently
small r , hence, the resulting surface is indeed an embedded surface in R3. The surface Pr(c) for each sufficiently small
r is called the r-pipe surface [17]. It is the well-known embedded r circle bundle of the curve. The radial vectors em-
anating from c(t) are the radial vectors of the circles. Hence, they are given by r�(t) cos s + r�(t) sin s, 0� t <

l, 0�s�2�. We show that these radial vectors are, indeed normal to the surface at each (t, s). First note the
following:
(i) (dc(t)/dt) · � = (dc(t)/dt) · � = 0, with ‘·’ denoting dot product.

(ii) (d�/dt) · � = (d�/dt) · � = 0, since � and � are unit vectors.
Using (i) and (ii), one can easily compute that the dot products between �/�t and �/�s and the radial vectors are 0;
hence, the radial vectors will be normal to the r-envelope, as defined below, in Definition 3.2.

It is known [14] that there is a certain positive number �c such that the map given by (s, t, r) �→ c(t)+ r�(t) cos s +
r�(t) sin s, 0� t < l, 0�s < 2�, 0�r < � is an embedding into R3. This is typically called the r-tubular neighbor-
hood and is a subset of the r-envelope, defined below (Definition 3.2).

Let x be a point in �M . We may assume that x belongs to a C2-regular space curve ci = ci(t), 0� t < li with
ci(0) = x. We may even assume ci is parametrized by its arc length without loss of generality. This implies |dci/dt | ≡ 1
for all t and that li equals the arc length of ci . Let � be a unit normal to M . Denote by �(t) and �(t) the restriction of
� to ci and the unit outward normal at ci(t), respectively, so chosen that dc/dt, �(t), �(t) form the right-hand system
relative to standard orientation in R3. Here the outward normal means the unit vector that is perpendicular to the
plane spanned by dci/dt and � and that points away from M at ci(t). Since M is C2, these vectors are at least C1

along ci(t).
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Fig. 2. Möbius strip.

Fig. 3. Comparison of methods: Möbius strip.

For any r > 0, define Er(M) by

Er(M) = {x ± r� : x ∈ M} ∪ {ci(t) + r�(t) cos s + r�(t) sin s : 0� t < li, 0�s < �}.

Definition 3.2. Er(M) is called the r-envelope 7 of M .

Remark 3.2. We note that M has been assumed to be orientable, as this is an important hypothesis for Theorem
6.1, a primary result of this paper. However, the definition of the envelope does not depend on a particular choice of
the (local) unit normal to the surface and the envelope construction is purely local in nature. The same (but local)
analytic representation of the envelope as stated above will uniquely and globally define the envelope regardless of
orientability of the surface. Hence, Er(M) remains well-defined even if M is non-orientable, while Er(M) will always
be an orientable surface. The orientability of Er(M) is exploited in the computational experiments presented showing
an approximation of a Möbius strip via the medial axis of its envelope, as illustrated in Figs. 2 and 3. This computational
result was motivated by our main theorem.

An illustration of this envelope is given in Fig. 2, below. The surface M depicted is a Möbius strip, to emphasize that
the definition of Er(M) is independent of the orientability of M , but similar images will exist for orientable 2-manifolds.
The constructive computational process is given across the three sub-images. The left one is just a standard-tessellated

7 Wolter [25] constructed the envelope of a spline surface parametrized in R3 by [0, 1] × [0, 1], although he did not call it an envelope. He states
without proof that this envelope is a C1,1-surface which is C1,1-diffeomorphic to the unit two-dimensional sphere for sufficiently small r . Strictly
speaking, our proof is not applicable to his case since [0, 1] × [0, 1] is not a surface with boundary according to our Definition A.2.
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graphics display of a Möbius strip. The middle image is a graphical display of many balls, centered at each vertex of the
Möbius strip tessellation, to give a visual representation of the r-envelope, for a radius r . The right shows the Möbius
strip and points sampled from its r-envelope.

Note that Er(M) is not even a topological manifold for some r , but it is readily seen that for a sufficiently small r ,
Er(M) is at least C1 everywhere, except possibly in a finite number of curves where it is at least G1. We now give an
explicit description of those curves for the future use. Set Si(r, t) = ci(t) + r�(t), |r| < �̂, 0� i�n, where ci’s are
the boundary components and � is the unit normal to M along those components. Note that at this point Si may not be
a regular surface, but it is the union of open line segments of length 2�̂ centered at the points in ci(t). In fact, they are
ruled surfaces built on the boundary curves with �(t) as the direction of the rulings. The set Er(M) ∩ Si(r, t) gives rise
to a curve in Er(M) for each fixed r . Denote such a curve by Si,r for each i. In fact, we will show later that Er(M), for
a certain range of r to be specified later, is C2 everywhere but along the Si,r ’s where it is at least C1,1.

Now set

� = min{�̂, �(ci) : 1� i�n}, (1)

where ci, 1� i�n is a boundary curve of M and �(ci) is the maximal radius of the regularly embedded pipe surfaces
Er(ci) [15].

Let r0 be a sufficiently small positive number so that Er0(M) is well-defined and C1 except for along the curves Si,r0

where it is G1. Define a map

Fr0 : Er0(M) × (−r0, �̂ − r0) → R3

by

Fr0(x, r) = x + rn, (x, r) ∈ Er0(M) × (−r0, �̂ − r0), (2)

where n is the unit normal field to Er0(M) which points away from M at each point of Er0(M). Such a choice of a
normal is possible because of the definition of the envelope.

Lemma 3.1. Fr0(x, r) is globally injective.

Proof. First, we clearly see that Fr0(x, r) is a globally injective C1-diffeomorphism when it is restricted to the pipe
surface portions of the envelope by the choice of �̂. Furthermore, the implicit function theorem yields Er(M) is a
C1-surface in the neighborhood of the points in the pipe surface portions. For any point x ∈ Er(M) given by the
expression {x ± r� : x ∈ M − �M, 0 < r < �̂}, we need somewhat more elaborate and lengthy (but more or less
elementary) arguments, for which we only give an outline here to save space. First we enlarge the set to {x ± r� : x ∈
M̂ − �M̂, 0 < r < �̂}. Now define a map F : (M̂ − �M̂) × (−�̂, �̂) → R3 by

F(x, r) = x + rn, r ∈ (−�̂, �̂), (3)

where n = nx is a unit normal to M̂ at x. Then it is well known that the Jacobian map F∗ of F at (x, r) is the symmetric
linear map whose eigenvalues are given by Ki/(1 − rKi) and 1, where Ki, i = 1, 2 are the principal curvatures of
(M̂, f ). Consequently, F is non-singular as long as |r| < �̂. This implies that F is locally a C1-diffeomorphism since
M̂ is a C2 surface. Hence, Fr0(x, r) is locally injective near every (x, r) ∈ Er0(M) × (−r0, �̂ − r0) − P�, where
P� = ⋃

r<�, 1� i �nPi,r (s, t), with each Pi,r (s, t) being the previously defined set Pr(s, t) specific to the curve ci . Note
that Fr0(x, r) is basically defined by restricting F to this set.

Finally along the Si = ci(t) + r�(t), |r| < �̂, 0� i�n, it is not hard to see that the envelope is G1, i.e. the tangent
planes vary continuously, and that Fr0(x, r) is locally injective along Si’s by the definition of the envelope and the local
injective property of Fr0 off Si’s as described above.

To show that Fr0 is globally injective, first note that Fr0 is globally injective in Er0(M) × (−r0, 0] by the choice of
r0. Let �0 = inf � such that Fr0(x, r) fails to be globally injective in Er0(M) × (−r0, �). It can be shown then that the
existence of such an �0 less than � − r0 presents a contradiction to the choice of �, using arguments similar to ones
previously published [22,23], now applied to Er0(M) in place of the compact closed surface M . Note that Er0(M) is a
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compact closed surface. Although Er0(M) is not C2 as assumed in [5,23], the basic arguments still applies to Er0(M)

with slight modifications. �

4. Isotopies of the envelope

Given a point x ∈ R3, define a real-valued function �M by �M(x) = the ordinary distance function from x to M .
Since M is compact, there is a point mx ∈ M such that �M(x) = |x − mx |. Since M is a C2-surface (with or without
boundary), the line joining x and mx meets M perpendicularly. Thus, mx is the foot of the perpendicular projection of
x onto M . From Lemma 3.1 above, mx is uniquely determined if x lies in the (connected) component of R3 − E�̂(M)

which contains M . The component is an open neighborhood of M . Denote it by U�. This tells us that �M is well-defined
in U�. We know in general such a �M is Lipschitz continuous.

Theorem 4.1. The distance function �M is a C2-function in U� − M = ⋃
0<r<�Er(M) except along a finite number

of surfaces Si, 1� i�n, where it is C1,1. The envelope Er(M), 0 < r < � is C2 everywhere except along the curves

Si,r = ci(t) ± r�(t), 0 < r < �, 1� i�n,

and it is at least C1,1 along those curves.

Proof. Restrict the distance function �M to the following two subsets:

�� = {x ± rn(x) : x ∈ M − �M, 0 < r < �},
where n(x) is the normal to M at x and � = n along �M and

B� = {ci(t) + r�(t) cos s + r�(t) sin s : 0� t < li, 0 < s < �, r < �}.
We first show that the distance function � defined in these sets are C2-functions. F(x, r) = x + rn(x), |r| < �

is locally diffeomorphic at x ∈ M − �M by the choice of �. It is not hard to see that this diffeomorphism is at least
a C1-diffeomorphism, since the Jacobian map of F is locally given in terms of the shape operator of the r level set
F(x, r), where r ∈ [0, �) is fixed to be a constant. Note that the shape operators (or their eigenvalues) are at least
continuous [14]. Thus, we may consider F as giving a C1-local coordinate chart about every point in ��. With this
coordinate system, it is easy to see that the gradient field ∇� of the distance function � is the unit tangential field to
the normal rays emanating from M . The normal rays are generated by the normal field n to M and n is at least C1,
since M is assumed to be C2. Hence, the tangential field is C1. This implies that the gradient field ∇� is a C1-field;
consequently, � is a C2-function in �� = {x ± rn(x) : x ∈ M − �M, 0 < r < �}. Applying the implicit function
theorem, the level sets of the distance function are also C2 in ��. Similarly, we see that the gradient field of the distance
function in B� is the unit C1-field generated by the radial rays emanating from the boundary of M . This is an easy
consequence of our choice of � [10,15]. One can, in fact, show that the map F : (0, �) × R2(s, t) → R3(x, y, z)

defined by

F(r, s, t) = {ci(t) + r�(t) cos s + r�(t) sin s : 0� t < li, 0�s�2�, r < �} (4)

is at least a C1-diffeomorphism. This, in turn, yields that the gradient field ∇� of the distance function �(F (r, s, t)) = r

coincides with the radial unit normal which is defined to be the field of the unit tangent vectors to the radial rays that
emanate from each point of ci into the normal directions to the curve ci at the point; hence, the desired result. Once
again, one can show that the radial normal field is at least C1. Thus, the distance function �M is a C2-function in B�.
The implicit function theorem again yields the desired result that the level surfaces of the distance function �M are
C2-surfaces except at r = 0, where it degenerates to be the boundary curves.

We now construct a specific C1-local coordinate chart (Ũm, 	m) in R3 about every point m in the surface Si(r, t) =
ci(t) + r�(t), 0 < r < �, 0� t < li . Let �i (r, t) be the outward unit normal field to the Si(r, t). Then �i (r, t) is
a local C1-vector field along Si(r, t) and it is tangent to Er(M). Note that the surfaces Si’s are actually at least C1-
surfaces. This can be verified by realizing that these surfaces occur in the interior of the solid pipes over the boundary
components, or can be regarded as surfaces in {x ± rn(x) : x ∈ M̂ − �M̂, 0 < r < �}, where n(x) is the normal
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to M̂ at x and � = n along �M̂ . Define a new vector field �̃i along Si(r, t) by �̃i (r, t) = r�(r, t). �̃i (r, t) is also a
C1-vector field along the surface, since r is clearly a C1-function there. Extend �̃i (r, t) to a non-zero C1-vector field
in a neighborhood Vm of m and denote it by the same letter �̃ for convenience. Then �̃ can be regarded as a C1-map
from R1(t) × Vm ⊂ R4(t, u, v, w) into R3(u, v, w) by setting �̃(x) = (�̃1(x), �̃2(x), �̃3(x)). Consider the system of
ordinary differential equations

dxi

dt
= �̃i , 1� i�3. (5)

By the existence and uniqueness theorem for ordinary differential equations [7] there is a unique solution x(t) =
(x1(t), x2(t), x3(t)) to this system for a given initial condition in a sufficiently small neighborhood Um of m, satisfying
x(0) = x0, (dx/dt)(0) = �̃(x0). The theorem also states that the local flow 
 : (−t0, t0) × Um → Vm defined by the
solutions 
t (x

0) = x(t; x0) is a C1-map for a sufficiently small t0 > 0. We choose the set of initial conditions to be the
pair (x, �̃(x)), x ∈ Si ∩ Um and restrict the above map to (−t0, t0) × Si ∩ Um. Note that Si ∩ Um has a C1-coordinate
system (t, r) induced from the C1-diffeomorphism (6) above by setting s = 0. It is easy to see that this restricted
map has a non-degenerate Jacobian map at (0, m). Hence, by the inverse function theorem, this restriction map is a
C1-diffeomorphism in a small neighborhood of m. Denote the diffeomorphism by 	̃m and the neighborhood by Ũm.
The resulting C1-local coordinate system of the pair (Ũm, 	̃m) is denoted by (u, v, w) with (0, 0, 0) representing m.
Note here that u, v represent t, r − r0 in Si ∩ Um and that w is the parameter along the solution curves emanating from
Si ∩ Um. Also note that r0 above corresponds to the radius of the pipe surface that contains m.

Now define 	m by

	m(u, v, w) =
{

	̃(u, v, w) if w ∈ (−t0, 0),

ci(u) + (r0 + v)�(ci(u)) cos w + (r0 + v)�(ci(u)) sin w if w ∈ [0, t0).
(6)

The function 	m(u, v, w) is clearly C1 except possibly along w = 0. The partials �	m/�u, �	m/�v are continuous
even along the surface defined by w = 0, hence, they are continuous everywhere. We need to show that �	m/�w is
also continuous along w = 0. The partial �	m/�w is given by tangent vectors of the solutions to the above system of
differential equations when w�0 and it converges to �̂ as the points approach the surface w = 0 from the negative
side of w. On the other hand, �	m/�w is given by the �F/�s on the positive side of w. The partial �F/�s converges
to �̂ as w → 0 from right. This, together with the triangle inequality, can be used to show that �	m/�w is continuous
at the points in the surface w = 0. Hence, all first partials are continuous in the neighborhood of m. This implies
that the map 	m is a C1-map [21, Theorem 9.16]; consequently, 	m gives rise to a C1-coordinate system about m.
We are ready to show that the distance function � is C1,1 along the surfaces Si, 1� i�n. We already know that the
distance function is C2 off the surfaces Si, 1� i�n. As before, let m be a point in one of Si, 1� i�n. Denote by
(x, y, z) the standard rectangular coordinates of R3. Without loss of generality, we may assume that (0, 0, 0) in these
coordinates represents m. As we have seen, the gradient field ∇� of � is given as the unit tangential field of the normal
rays everywhere off the surfaces Si, 1� i�n. Since the coordinate transformation between two coordinate systems
(x, y, z) and (u, v, w) around m is a C1-transformation, the induced Jacobian transformation is continuous. From the
particular choice of the coordinate system (u, v, w), we see that ∇� is continuous and it, indeed, is the unit tangential
field to the normal radial ray emanating from the points in M . By the chain rule, we see that ∇� in terms of (x, y, z) is
given as a continuous function of (u, v, w) off the surfaces Si, 1� i�n. Since the coordinate transformation between
them is a C1-diffeomorphism, ∇� in (x, y, z), as (x, y, z) approaches points in Si, 1� i�n, must converge to the
image of ∇� in terms of (u, v, w) under the Jacobian transformation. Since ∇� in the (x, y, z) coordinates is the unit
tangential field to the normal radial ray off the surfaces Si , it converges to the unit tangential field of the normal rays
emanating from the boundary curves ci, 0� i�n. Thus, the unit tangential field to the normal radial rays must be a
gradient field even along the surfaces Si, 1� i�n. Consequently, ∇� is C1 off the surfaces Si, 1� i�n, and continuous
along those surfaces. We will see that ∇� is Lipschitz continuous along them. To this end, let Bm be a sufficiently small
open ball in R3(x, y, z) centered at a point m in one of the surfaces Si, 1� i�n, say, Si . We can assume that Si divides
U into two subsets with the common boundary Bm ∩ Si. We can also assume that for any p, q ∈ Bm which belong to
the same side of the surface the Lipschitz condition |(��/�x)(q) − (��/�x)(p)| < k|q − p| holds. This can be seen as
follows. Since p, q belong to the same side of Si , p, q belong to an open set where � is a C2-function as seen before
and ∇� is C1, hence, Lipschitz. The same observation holds for the other two partials. Now suppose that p, q belong
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to opposite sides of the surface in Bm. Join p, q by the line segment between them. Since Bm is convex, the entire line
segment belongs to Bm. The line segment meets Si at a point b in Bm. Then the triangle inequality yields∣∣∣∣��

�x
(q) − ��

�x
(p)

∣∣∣∣ �
∣∣∣∣��

�x
(q) − ��

�x
(b)

∣∣∣∣+
∣∣∣∣��

�x
(b) − ��

�x
(p)

∣∣∣∣ < k|q − b| + k|b − p| = k|q − p|.

The same proof also works for the other partials. This implies that ∇� is (locally) Lipschitz continuous along the
surfaces Si, 1� i�n; hence, � is C1,1 there. In particular, applying the implicit function theorem to the distance
function, one gets that each level surface is C2 off Si, 1� i�n and C1,1 along Si, 1� i�n. �

With � defined as in Eq. (1), we have the following corollary.

Corollary 4.2. The envelope Er(M), � > r > 0 is the r level surface of the distance function �. Furthermore,
Er(M), � > r > 0 form an ambient isotopic family.

Proof. The first statement is clear from Theorem 4.1. For the second statement, let 0 < r1 < r2 < �̂ be any two
levels. The gradient field of � is given by the unit normal field n. Let � be a sufficiently small positive number such that
0 < r1 − � < r1 < r2 < r2 + � < �̂ holds. Let f be a positive C∞ real-valued function satisfying

f (r) =
{

1 if r1 �r �r2,

0 if r �r1 − � or r �r2 + �.
(7)

Denote a new vector field ñ(r, x) in U�̃ is defined by ñ(x) = f (r)n(x), ∀x ∈ U�̃. Then ñ gives rise to a Lipschitz
continuous vector field in R3 with compact support. It generates a one parameter family of diffeomorphisms of R3

which deforms Er1 onto Er2 [16]. �

Corollary 4.3. Let M be a compact C2 surface in R3. Denote by �M its boundary, which could be empty. Denote by
Mr the r-offset surface of M. Then for all r, |r| < �̂, the Mr ’s are mutually ambient isotopic and the isotopy is obtained
through the flow generated by the normal field n to M.

Proof. If M has no boundary, Corollary 4.3 is proven in [5]. Otherwise, consider M̂ introduced earlier, M̂ is a C2-
compact surface with boundary �M̂ . The existence of a tubular neighborhood for such a surface tells that there is a
sufficiently small r0 > 0 such that all |r| < r0 offset surfaces are ambient isotopic to each other and the ambient
isotopy is obtained by the normal flow. This can be seen as follows. Since M̂ is compact there is a sufficiently small
r0 > 0 such that F : M̂ ×[−2r0, 2r0] → R3 defined by F(x, r) = x + rnx, |r| < 2r0 is an injective diffeomorphism,
where nx is a fixed unit normal field to M̂ . Both F(M̂ × [−2r0, 2r0]) and F(M̃ × [−r0, r0]) are compact in R3 and
F(M̂ × [−2r0, 2r0]) contains F(M̃ × [−r0, r0]) as a proper subset. It is well known then that there is a C∞-function

f : R3 → [0, 1] such that f is identically 0 outside F(M̂ ×[−2r0, 2r0]) and f is identically 1 inside F(M̃ ×[−r0, r0]).
Let n be the unit tangent vector field to the normal field in F(M̂ × [−2r0, 2r0]). Then f · n gives rise to a C1-
vector field in R3 with a compact support. This vector field creates a flow which is identical to the normal flow in
F(M̃ × [−r0, r0]). Furthermore, the one-parameter family of diffeomorphisms generates the desired ambient isotopy.
Now combining this ambient isotopy with the ambient isotopy given in Corollary 4.2 yields the desired ambient
isotopy. �

5. Minimum positive distance from the medial axis and a folk lemma

This section presents a lemma which may be of general interest regarding the relation between a surface and its
medial axis [5]. It extends the known proofs for the existence of a positive minimum distance between the surface and
its medial axis to surfaces which are C1,1, as defined, below.

One of the basic consequences from the definition is that M can be locally represented as the “graph” of a real-valued
function of two variables. In particular, we can assume that for a given point m ∈ M , there is an open neighborhood
U(x, y, z) of 0 in R3 such that m = 0 and the graph of a function z = f (x, y) with ∇f (0, 0) = 0 represents M in U ,
where ∇f denotes the gradient of f .
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Lemma 5.1. For a compact, C1,1-manifold M, there exists a positive minimum distance between M and its medial
axis.

Proof. First note that

|∇f (x, y) − ∇f (0, 0)| = |∇f (x, y)|�k|(x, y) − (0, 0)| = k|(x, y)|. (8)

Hence, along any line given by ax + by = 0, or (t, −a/bt), −� < t < � for a small �,

f (t, (−a/b)t) =
∫
�
∇f (t, −a/bt)�

∫
�
|∇f (t, −a/bt)|�k

∫
�

√
1 + (a/b)2t, (9)

where � = �(t) is the space curve given by �(t) = (t, −a/bt, f (t, −a/bt)) and the first equality follows from the

Fundamental Theorem of Line Integrals. On the other hand, k
∫
�

√
1 + (a/b)2t = (k/2)

√
1 + (a/b)2t2. This yields

that

f (x, y) = f (t, −a/bt)�(k/2)

√
1 + (a/b)2t2

for all a, b. Note if b = 0, just parametrize the y-axis in t . Since

(1/2)

√
1 + (a/b)2 �1 + (a/b)2,

the last inequality expressed in terms of x, y gives

f (x, y)�k(x2 + y2), (10)

in a small neighborhood of (0, 0).
This shows that the graph, therefore the surface, lies below the paraboloid z = k(x2 + y2). It is now clear that the

curvature sphere of the paraboloid at (0,0,0) is tangent to the graph z = f (x, y) at (0,0,0) and fits entirely above the
graph. The equation of the curvature sphere is given by x2 + y2 + (z − (1/2k))2 = (1/2k)2. Applying this argument
at every point in M and using the compactness hypothesis, we get a minimum radius � of the spheres. Then, similar
to previous proofs [22,23] a minimum critical value c is defined. Although these previous proofs assumed that the
manifold was C2, the hypothesis here of C1,1 is sufficient to derive this value of c. We then define �, as

� = min{�, c}.
Then there are no points in the medial axis of M within any distance less than �. �

Remark 5.1. This minimum distance Lemma 5.1 can be directly applied to previously presented theorems about
C2-manifolds [5,23], to extend them to compact, C1,1 2-manifolds without boundary.

For the presentation of the main theorem in the next section, the following lemma provides guidance for the con-
struction of an ambient isotopy having a set of compact support. It is likely a “folk theorem”. This lemma provides
sufficient conditions so that two different isotopies defined over intersecting sets of compact support can be “pasted”
together to yield a single ambient isotopy over the union of the sets of compact support.

Lemma 5.2. For n�0, let F be an ambient isotopy defined on Rn × [0, 1] onto Rn so that subsets A and B of Rn

are ambient isotopic under F. Similarly, let G be an ambient isotopy defined on Rn × [0, 1] onto Rn so that subsets
C and D of Rn are ambient isotopic under G. Furthermore, suppose that F has compact support CS(F ) and G has
compact support CS(G). If each point of x ∈ CS(F ) ∩ CS(G) is a fixed point of both F and G, then the
function

F ∪ G : Rn × [0, 1] → Rn,
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defined by

F ∪ G(x, t) = F(x, t) ∀x ∈ CS(F ) ∀t ∈ [0, 1],
F ∪ G(x, t) = G(x, t) ∀x ∈ CS(G) ∀t ∈ [0, 1],

and

F ∪ G(x, t) = x ∀x ∈ Rn − (CS(F ) ∪ CS(G)) ∀t ∈ [0, 1]
is an ambient isotopy with compact support CS(F )∪CS(G) such that A∪C is ambient isotopic to B ∪D under F ∪G.

Proof. The proof is elementary and complete details are available elsewhere [18]. �

6. Isotopy of the manifold with boundary

This section presents the main theorem of this paper and its proof. This theorem forms the theoretical basis for
the existence of an ambient isotopic PL approximation of a compact orientable surface with boundary. Previously,
there were only firm theoretical foundations for creation of ambient isotopic PL approximations of manifolds without
boundary. Those proofs relied upon the demonstration of a positive minimum distance between the surface and its
medial axis, a condition which remains true for C1,1-surfaces by Lemma 5.1.

The construction of an ambient isotopic PL approximation of M proceeds by first creating Er(M), with r < �
(as defined in Eq. (1)), so that Theorem 4.1 can be invoked. Furthermore, we assume the availability of a simplicial
approximation K(r) ambient isotopic to the envelope, Er(M), where the homeomorphism between Er(M) and K(r)

has specifically been constructed using the nearest point map from K(r) onto Er(M), so that each point x ∈ K(r) is
mapped into Er(M) along a normal vector of Er(M), as can be done according to Remark 5.1. We are then interested
in defining a mapping from M into K(r) whose image is ambient isotopic to M . If M is orientable, a consistent normal
direction can be chosen on M . Then, for each x ∈ M , its consistently chosen normal vector nx intersects K(r) in
a unique point nearest to M , designated as (x). The correspondence x �→ (x) gives rise to a homeomorphism
between M and (M) since  has been restricted to a specific unit normal direction n to M . Observe that (M) is not
necessarily a simplicial subcomplex of K(r) because the image of �M under  will not necessarily be PL. However,
it will be possible to obtain an ambient isotopic PL approximation of M from (M), as noted in the main theorem,
which follows and relies upon the notation for , as defined, above.

Theorem 6.1. Let M be a compact, orientable, C2-mainfold, with boundary. For any positive r < � and for the
previously defined mapping  : M → K(r), the image, (M) is ambient isotopic to M. Furthermore, there exists a
PL ambient isotopic approximation of M and both of these sets can be made arbitrarily close to M.

Proof. As a full proof would require extensive details, an outline of the critical steps follows.
The proof of the ambient isotopy between M and (M) is similar to previous work by two of the present authors

[5], but now has additional reliance upon Theorem 4.1 to ensure that Er(M) is C1,1 and upon Corollary 4.2 to ensure
appropriate ambient isotopic images of Er(M).

As already noted, the image (M) need not be PL, since (�M) need not be PL. However, since (�M) is C1,
an ambient isotopic PL approximation �((�M)) of (�M) can easily be constructed. Then, a PL approximation,
�((M)), to (M) can be created by replacing (�M) by �((�M)) and extending � to an ambient isotopy � between
�((M)) and (M). The construction of � proceeds locally upon each triangle in K(r) and on each line segment used
to approximate subsets of (�M). Then these local isotopies are pasted together via Lemma 5.2 to achieve the final
desired ambient isotopic PL approximation to M , where this pasting is similar to other ambient isotopic approximation
techniques in the literature [11,15,19]. �

7. Conclusion and challenges: Integration of theory and practice

This paper presents new theory for PL ambient isotopic approximation and reconstruction of C2-surfaces with
boundary. These theorems are expected to lead to improved algorithms, with preliminary algorithmic experiments
already published [1].
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The proofs rely upon the definition of the envelope of a manifold M . This envelope definition does not require M to
be orientable, but the proof of an ambient isotopy PL approximation of M does utilize this orientability assumption.
Experimental algorithms were created where this orientability requirement was dropped as an input criterion, with the
results described, below. These experimental results may prompt even stronger theorems, as these images portray easily
discernible improvements, as described, below.

In Fig. 3, there are four images. The top left is a surface reconstruction by merely feeding the sampled point cloud
data of a Möbius strip directly to the power crust algorithm [3], which is not designed to directly accept such input. The
top right image shows the approximation of the medial axis of the Möbius strip that is generated by the power crust
algorithm. The lower left shows an envelope of the Möbius strip. The lower right shows the final reconstruction of this
non-orientable surface as the internal medial axis of a reconstructed envelope. The improved image in the lower right
was created by implementing a very short pre-processor to the existing power crust code and this technique warrants
more exploration.
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Appendix

The following terminology and notation is used throughout this paper.

Remark A.1. A function f : M → R3 defined on a manifold M of dimension less than or equal to 2, is an (topological)
embedding if f : M → f (M) is a homeomorphism (with respect to the subspace topology on f (M)). If, in addition,
f is of class Ck on M (k�1) and the Jacobian map of f is of full rank, then f is said to be a Ck embedding, and M

(actually f (M)) is called an embedded Ck submanifold of R3.

In this article we present theoretical foundations for our work with computational models of curves and surfaces.
We summarize the elements of differential geometry required to state and prove our results. Good treatments of this
elementary material can be found in the texts [7,13].

We restrict our attention to curves and surfaces in three-dimensional Euclidean space. 8 Hereafter we assume that
all differentiable objects are C2, as defined below, unless otherwise stated (see [7]).

Definition A.1. A Hausdorff topological space M satisfying the second countability axiom is called a C2-differentiable
manifold of dimension two (without boundary) if it satisfies the following:
(1) For any point x ∈ M , there exists a pair (U, �U), where U is an open neighborhood of x in M , and �U : U → A ⊂

R2 is a homeomorphism of U with an open set of R2. The neighborhood U is called a coordinate neighborhood
(or patch) of x and the function �U is called a coordinate function of x. The function �U introduces the local
coordinates �U(x) = (u1(x), u2(x)) for this patch. The pair (U, �U) is often referred to as a coordinate patch.

(2) For any coordinates patches U, V with U ∩ V �= ∅, the map �V ◦ (�U)−1 : �U(U ∩ V ) → �V (U ∩ V ) is C2.

A C2-differentiable manifold M of dimension two with boundary �M is defined similarly, as follows.

Definition A.2.
(1) If x ∈ M − �M , there is a coordinate pair as in (1) above. If x ∈ �M , there is a coordinate pair (U, �U) with a

surjective homeomorphism �U : U → H 2, where H 2 is the half plane {(x1, x2) ∈ R2 : x2 �0}.
(2) Given two coordinates patches U, V with U ∩ V �= ∅, the function �V ◦ (�U)−1 : �U(U ∩ V ) → �V (U ∩ V )

is C2 in the usual sense if U ∩ V contains no point in �M . Otherwise, the map �V ◦ (�U)−1 can be extended to a
C2-homeomorphism in an open subset of R2 that contains the domain �U(U ∩ V ).

8 Generalizations can be found elsewhere [7].
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If M is compact, �M is a disjoint union of finite closed curves, each of which is diffeomorphic [20] to the unit circle.
Let M be a two-dimensional manifold with or without boundary. A function f : M → R3 is said to be a C2-

differentiable map if for any point x ∈ M , there is a coordinate patch (U, �U) about x so that the composition
f ◦ (�U)−1 : �(U) → R3 is C2.

What we see as a surface in R3 in the conventional sense is the image of M in R3 under f . In the case when M

is a submanifold of R3, we often identify M with f (M) if there is no risk of confusion. The map f is also called
the parametrization of the surface. However, as is in the cases to follow, we often need to distinguish M and its
image.

Since the Jacobian map f∗(x) of f at x ∈ M is of full rank 2, it gives rise to an injective linear map of the tangent
space, 9 denoted T Mx , into the tangent space T R3

f (x), which is identified with R3 in the conventional way.

The tangent space T Mx is identified with R2 with the standard coordinates (u1, u2) under the coordinate map �U .
In terms of these coordinate systems, the matrix representation of f∗(x) is the following three by two matrix:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

�x1

�u1

�x1

�u2

�x2

�u1

�x2

�u2

�x3

�u1

�x3

�u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where xi(u1, u2) = fi(u1, u2), i = 1, 2, are the coordinate functions of f .
The image f∗(x)(T Mx) is a plane passing through f (x) in R3 and is called the tangent plane to the surface f (M)

at f (x), but also referred to as the tangent plane to M at x. The ordinary dot product in R3 induces an inner product in
the tangent plane. The induced inner product gives rise to the induced Riemannian metric in M . When we say a surface
in R3, we implicitly understand the triple consisting of the manifold M , the embedding f and the induced Riemannian
metric.

Let (M, f ) be an embedded surface in R3. Denote by n = nx a (local) unit normal field along f (M). Given a tangent
vector X to M at x, Df∗(X)n denotes the directional derivative of n in the direction of f∗(X) in R3, where f∗ is the
Jacobian map of f at x. The derivative Df∗(X)n is tangential to f (M) at f (x). By setting

Df∗(X)n = −f∗(AX),

one can obtain a linear operator A on the tangent space T Mx , see [13]. The map A determines the local geomet-
ric shape of the embedded surface f (M) and A is a symmetric linear operator with respect to the induced Rie-
mannian metric; hence, A can be represented by a 2 × 2 symmetric matrix with respect to any orthonormal basis
for T Mx .

Definition A.3. The linear operator A = Ax is called the shape operator (or the second fundamental form) of the
surface (M, f ). The eigenvalues of A are the principal curvatures of the surface at the point x (see, e.g., [13]).

Definition A.4. A point x ∈ M is said to be a critical point of a C2-function g : M → R if the differential dg =
(�g/�u1) du1 + (�g/�u2) du2 = 0 at x, where (u1, u2) is a coordinate system about x in M . A critical point is called
non-degenerate if its Hessian Hg(x) = (�2g/�ui�uj ) is invertible; otherwise it is called degenerate.

For our purposes, it is convenient to characterize the critical points of a function defined in M in the context
of submanifolds, namely, in the extrinsic setting. Let g be as above. We state the following proposition without
proof.

Proposition A.1. The point x ∈ M is a critical point of g if there is an open neighborhood U of f (x) in R3 and a
C2-function g̃ : U → R with g̃ = g ◦ f −1 such that the gradient ∇g̃ in R3 is normal to the tangent plane to f (M) at
f (x). Furthermore, such a (local) extension g̃ always exists.

9 The tangent space is an abstraction of the standard notion of a plane of tangent vectors for each point of a differentiable manifold in R3.
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We now define the (global) energy function, G for a manifold with boundary by

G : M × M → R, G(x, y) = ‖x − y‖2, (A.1)

where ‖x − y‖2 is the square of the ordinary distance function on R6.
We need to identify the critical points of G. In the intrinsic sense, a critical point is a pair (x, y) ∈ M × M such that

dG(x, y) = 0, as defined above. Extrinsically, recall that M is embedded by f into R3; hence, M × M is canonically
embedded into R6 = R3 × R3 under f × f : M × M → R3 × R3. Note also that the function G can naturally be
extended in the entire R3 × R3. Therefore, we may redefine, by Proposition A.1, a critical point of G : M × M → R
to be a point (x, y) ∈ M × M where the gradient field ∇G(x, y) is normal to (f × f )(M × M) at (f × f )(x, y).

Proposition A.2. Let G be defined as in Eq. (A.1). Then, there exists a minimal positive critical value of G in M ×M .

Proof. Obviously, G(x, y) > 0, for x �= y. Second, note that G has a critical value r > 0, for example, the maximal
value, since M × M is compact. The gradient of G in R3 × R3 is given by

∇G = 2(x − y, −(x − y)),

where x = (x1, x2, x3), y = (y1, y2, y3) are the standard Euclidean coordinates of x, y, respectively.
On the other hand, the tangent plane to f (M) at f (p), p ∈ M in R3 is spanned by two vectors �f/�ui, i = 1, 2.

Hence, the tangent space of (f × f )(M × M) at (x, y) = (f (p), f (q)) in R3 × R3 is the 4-space spanned by four
vectors (�f/�ui)(p), i = 1, 2 and (�f/�vi)(q), i = 1, 2, where, as before, (u1, u2), (v1, v2) denote local coordinates
about p, q, respectively. The gradient ∇G is normal to the tangent space of (f × f )(M × M) at (f × f )(p, q) if and
only if

3∑
k=1

(fk(p) − fk(q))
�fk

�ui

(p) = 0, i = 1, 2,

3∑
k=1

− (fk(p) − fk(q))
�fk

�vi

(q) = 0, i = 1, 2.

If M has no boundary, this immediately tells us that (p, q) is a critical point of G if and only if either the line segment
connecting f (p), f (q) is normal to the tangent planes to f (M) at f (p) and f (q) in R3, or f (p) = f (q). We claim
that if

c = inf{r > 0 : r is a critical value of G} (A.2)

then c is positive, with elementary proofs available [22,23].
When M has a non-empty boundary, the situation is slightly more complicated. There will be three possible cases

for critical points to occur. (1) (x, y) is a critical point of G and x and y both lie in the interior of M; (2) (x, y) is a
critical point G and one of them lies in the interior of M and the other lies in �M; (3) (x, y) is a critical point of G and
x and y both lie in �M . In any of these cases, a slightly modified proof for the case without boundary also works. �
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