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ABSTRACT

Given a curvilinear geometric object in R3, made up of properly-joined parametric
patches defined in terms of control points, it is of interest to know under what conditions
the object will retain its original topological form when the control points are perturbed.
For example, the patches might be triangular Bézier surface patches, and the geometric
object may represent the boundary of a solid in a solid-modeling application. In this
paper we give sufficient conditions guaranteeing that topological form is preserved by
an ambient isotopy. The main conditions to be satisfied are that the original object
should be continuously perturbed in a way that introduces no self-intersections of any
patch, and such that the patches remain properly joined. The patches need only have C°
continuity along the boundaries joining adjacent patches. The results apply directly to
most surface modeling schemes, and they are of interest in several areas of application.

Keywords: geometric modeling, ambient isotopy, topological equivalence.

1. Introduction

Many problems in computational geometry involve the notion of equivalent topo-
logical form. For example, this concept is an intrinsic part of the formulation of
triangulation, where a frequently used definition of sameness of topological form is
that of homeomorphism.' This definition is also implicit in the problems of graph
isomorphism 2 and congruence of point sets.®> Similarly, the concept of equivalent
topological form is used in many application fields of computational geometry. In
particular, it is used in computer graphics,*® robotics,® image processing,”-8
puter aided geometric design (CAGD),!° and solid modeling.'' Tt is the last two of
the mentioned application fields that provide the primary motivation for this paper.

com-

*Department of Mathematics, Linkdping University, SE-581 83 Linkdping, Sweden

TComputer Science & Engineering, U-3155, 191 Auditorium Road, University of Connecticut,
Storrs, CT, USA 06269-3155

iDep’t IRO, Université de Montréal, 2900 Boul Edouard Montpetit, CP 6128, Succ CENTRE-
VILLE, Montréal, Québec Canada, H3C 3J7



Other fields that use the concept of equivalent topological form are tolerancing and
metrology, engineering design, and finite-element analysis; references illustrating
such use, in each of these fields, have been listed elsewhere.!2

As previously observed,'? the idea that we are willing to accept variation in a
geometric object, but that we insist that it should retain its original topological
form, has powerful intuitive appeal. The idea is often used only in an intuitive
way, but rigorous definitions, which vary depending upon the application, have
also been introduced: for example, homotopies !¢ and homeomorphisms.! In the
context of solid modeling and CAGD, a stringent (but, as we will show, practicable)
requirement, for acceptance of two geometrical objects as topologically equivalent,
is that they should be linked by an ambient isotopy in R>. In this paper we show
how to guarantee that an original and perturbed curvilinear simplicial complex are
linked by an ambient isotopy. The theorem proved is a very general result which can
easily be applied in many situations occurring in applications; for example, in the
special case of complexes made up of triangular Bézier patches, sufficient conditions
that the hypotheses of our theorem be satisfied have been presented elsewhere.!®

The organization of the paper is as follows. In Section 2 we define ambient
isotopy. In Section 3, we state the main result, and in Section 4, we give its proof.
Section § concludes the paper.

2. Curvilinear Simplexes and Ambient Isotopy

Suppose that we are given a finite curvilinear simplicial complex '* K = UY, S;
in R® where each S; is a two-dimensional patch defined in terms of its control points.
For example, S; might be a Bézier, B-spline or NURBS (Non-Uniform Rational B-
spline) surface patch !5 defined in R3, and K might represent the boundary of a
three-dimensional solid (with curvilinear boundary) in a solid-modeling application.
These patches will be properly joined if they are disjoint, or intersect along a common
boundary curve or in a vertex point. If we suppose now that the control points of
the S; are perturbed, then we might ask under what conditions the complex K will
retain its original topological form. The perturbations referred to here might, for
example, correspond to small perturbations of the control points, caused by the use
of finite-precision arithmetic or by interactive graphical editing. Thus, we introduce
a parameter t € [0,1], write K(t) = UN,S;(t), where S;(t) is a perturbed version
of S;(0) = S;, 4 = 1,...,N, and ask under what conditions K (t) has the same
topological form as K (0) = K.

We turn now to the definition of “same topological form”. One interpretation
of these words is that two sets should be linked by a homeomorphism.! However,
we show that if perturbations of the control points are appropriately restricted,
then the perturbed control points define new objects that are similar according to
a much more stringent condition, namely, ambient isotopy, which informally means
that there is an elastic motion of the ambient space R3 that moves one object into a
position congruent to the other.'® An intuitive illustration of this condition can be
given, as follows.!2 Imagine that the object is made of red putty, and that the rest of
R3 is filled with black putty; if the object and the surrounding space are elastically



deformed, with no ripping or cutting of the boundary of the object, and without
introducing new self-intersections of the boundary, then the modified object (the
deformed red putty) has the same topological form as the original. Thus, a cube
might be transformed into a solid spherical ball, but if the original and perturbed
objects are to be of the same topological form, then two disjoint rings cannot become
interlinked ,* a torus cannot become a torus with a knot in it, and a trefoil knot
cannot change orientation .'* The possibilities precluded in the conclusion of the
previous sentence would be permitted if topological equivalence were defined merely
by a homeomorphism between the original and perturbed object.
We now give the formal definition of an ambient isotopy.

Definition 1 The complexes K(0) and K(1) are linked by an ambient isotopy if
there is a continuous mapping

F:[0,1]x R*— R?

such that for each t € [0,1], F(t,-) is a homeomorphism from R® onto R® which
carries K(0) onto K (t).

Below, we will give sufficient conditions for the existence of an ambient isotopy
linking K (0) and K (¢).

3. Equivalence of Curvilinear Simplicial Complexes

Suppose there is a one-parameter family of homeomorphisms, depending con-
tinuously on the parameter, carrying K(0) onto K (¢) and S;(0) onto S;(t) for all
parameter values t, where the patches S;(0) themselves do not self-intersect. In this
paper, we show that the hypotheses contained in Assumptions 1 and 2 below are
sufficient to guarantee the existence of an ambient isotopy between K (0) and K (t).

Let a denote a control-point vector that varies over some open subset {2 in
R™. (More specific information about the form of this control-point vector will
be given at the end of this section.) For each such a, let S(a) be a curvilinear
triangular surface patch in R3, represented by a mapping X (a;u,v) € R3, where
(u,v) is in some, arbitrary, closed triangle® 7 in parameter space, T C R%. We
will assume that the mapping X is in C?(Q x T), and, for each a, we will denote
the mapping from 7 into R® by X(a). The 3 x 2 Jacobian of X(a) is denoted
by A(a) and its value at a point P = (u,v) € T by A(a;u,v) or A(a; P). Note
that, for triangular parameter domains, X () may be considered as a function of
the barycentric coordinates for (u,v) with respect to the corner points of T, so
that the surface patch is independent of the particular choice of the triangle 7 in
parameter space. In many applications it is convenient to choose different domains
T; for different surface patches. This introduces no essential changes in the proof:
we have used T throughout, for simplicity.

Now consider a finite collection, S(a;), 1 < i < N of surface patches. We
introduce the following notation.

%The domain 7 may also be a rectangle in R? or some other polygonal domain with strictly-
convex corners. In that case the subsequent analysis will go through with only formal changes.



For each 7 the control-point vector «; is a function a; = «;(t) of a parame-
ter t € [0,1], with a;(¢) € Q for all t. Subsequently we will denote the surface
patches S(a;(t)) by S;(t), the mappings X («;(t);u,v) or X (a;(t); P) by X;(t;u,v)
or X;(t; P) and the Jacobians (with respect to (u,v)) A(a;(t);u,v) or A(a;(t); P)
by A;(t;u,v) or A;(t; P).

We will now introduce a definition, and make the following assumptions.
Definition 2 Assuming that the patches are properly joined, we say that two adja-
cent patches S;(t) and S;(t) are nontangential if for any two regular curves in S;(t)
and S;(t) emanating from an arbitrary point P € S;(t)NS;(t), their tangent vectors
at the point P are not parallel and identically directed, unless the patches intersect
along a common curve and the tangent vectors are both parallel to the tangent vector
of Si(t) N S;(t) at the point P.

Assumption 1 For every patch S;(t), its control-point vector a; = a;(t) is a con-
tinuously differentiable function of t.

Assumption 2 For all t € [0,1] the patches S;(t) 1 <i < N, are properly joined.
Moreover, they are properly joined in the same way for every t. Also, the mappings
X;(t) : T — R® are one-to-one and their Jacobians A;(t; P) are non-singular® for
all PeT andallt € [0,1]. Finally, any two adjacent patches, S;(t) and S;(t) are
nontangential for all t.

Note that our assumptions impose no requirement on the level of continuity at
patch intersections: we require only simple continuity, and that the intersection be
non-tangential. The latter requirement, imposed in Assumption 2 and defined in
Definition 2, may be rephrased informally as follows. If we imagine departing from
a point in the intersection of two patches, and following along each of two regular
curves, one in each patch, then the tangent vectors of the two regular curves must
not be the same, except possibly in one case. The exception is the obvious one: if
the two patches intersect along a boundary curve, then it is possible that the two
regular curves, one in each patch, are in fact identical, with tangent vector equal to
the tangent vector of the boundary curve.

We now state the main theorem, which is proved in Section 4.

Theorem 1 Under assumptions 1 and 2, the sets K(t) are linked by an ambient
isotopy, F.

For the particular case where each S;(t) is a triangular non-selfintersecting Bézier
patch with non-singular Jacobian, and whose perturbation results from perturbation
of its control points, we have given sufficient conditions 2 to satisfy Assumption 2.

Although the proof of Theorem 1 is deferred until Section 4, some comments are
in order here. First of all, Assumption 1 can be replaced by the weaker condition
that «;(t) is only a continuous function of ¢: we have assumed continuous differen-
tiability in order to simplify the proofs. Assumption 2 excludes, in particular, the
case of a cusp formed by two adjacent patches.

Assumption 2 implies that the complexes K (t) are homeomorphic for all ¢ €
[0,1], but we establish the stronger conclusion of the existence of ambient iso-

bThe 3 x 2 Jacobian is non-singular if it is of full rank.



topy. The literature contains many theorems for extending an isotopy to an am-
bient isotopy. Representative examples include an elementary proof for piecewise-
linear simplicial complexes,'? theorems giving necessary and sufficient conditions on
piecewise-linear compact polyhedra,!” and theorems involving restrictions to C>
compact submanifolds.!® Theorem 1 of this paper relies upon weaker hypotheses
than any of these cited results.

We also state a corollary to Theorem 1.

Corollary 1 Given any open set O containing the set |J K (t), then the ambient
0<t<1

isotopy F may be chosen such that, for 0 <t <1, F(t,-) equals the identity mapping
outside O.

Corollary 1 expresses the intuitively obvious notion that in order to transform
K (0) into K (1), then only some arbitrarily small amount of additional “elbow room”
must also be deformed about the region in R?® through which K (t) moves as t varies
from 0 to 1.

We conclude this section by mentioning certain examples of simplicial com-
plexes covered by the theorem. The first is the case already mentioned, when
X (a;u,v) denotes a Bézier polynomial or rational function of degree n in the
variables (u,v), with a representing the coordinates of the control points or the
weights. For n-degree Bézier polynomial functions we may write o = (..., Ryjk, .. -)
and X (a;u,v) = 32,5 RijrBijr(u,v) where (u,v) are the coordinates for a point
in 7, Ry, are the control points, ¢ + j + k = n, and B;j, are the Bernstein-
Bézier polynomials. In this case @ = R™ = {a = (..., Rijk,...)}. Further, it is
clear that the mapping of (a;u,v) into X (a;u,v) is in C®°(Q x T). For rational
n-degree Bézier surfaces we have a = (..., Rjk,..., Wijk,...) and X(a;u,v) =
Zz’jk RijkBijk(u,v)/Zijk wijkBijk(u,U), with Wijk, ¢t + 7 + k = n, denoting the
weights. Then we take

Q= {a = ( -7Rz'jk7- -5 Wik, - - ) : Eijk w,'jkBijk(u,v) # 0 for all (U,U) eT },
or more simply,
Q:{a: (...,Rijk,...,wijk,...):wijk >0fOI‘ all ’L,j,k}

Again, the mapping is in C°°(Q2 x 7). Assumption 1 can be satisfied, for example,
by letting the control points and the weights be linear functions of ¢, and we may
let the control points for common boundary curves coincide. The real issues '® are
the verification that the mappings X;(t) are one-to-one with non-singular Jacobians
and that the patches are nontangential for all ¢.

Similar considerations apply in the context of tensor-product spline surfaces and
other surface-modeling schemes.!?-20-21,22

4. Proof of Theorem

In the following, Subsection 4.1 provides some auxiliary results needed to prove
the main lemma. The main lemma and its proof appear in Subsection 4.2, and the
proof of the theorem itself (Theorem 1) appears in Section 4.3.



4.1. Auziliary Results

We begin by formulating some technical lemmas needed in the proof of the main
lemma.

Lemma 1 The Jacobians A;(t) are uniformly non-singular and bounded in norm,
i.e., there exist positive constants ki and ky such that

kullell < [l Ai(t; Pell < kaflel]

for all vectors e € R?, all t € [0,1], all i and all P € T.

The proof follows by a continuity and compactness argument, using Assumptions 1
and 2.

Lemma 2 There erist positive constants k3 and k4 such that
ks||Pr — Pol| < || X3(t; Pr) — Xa(t; Po)|| < kal| P — Fol|

forall P1, By €T, all i and all t € [0,1].

Proof. Since the second derivatives with respect to P of X;(¢; P) are bounded
uniformly in [0,1] x T, there exists, by Taylor’s theorem, a constant ¢; such that

1X:(t; Pr) — Xi(t; Po) — As(t; Bo)(Py — Ro)|| < ea]| Py — P
for all Py, P, and all t. Therefore
1Xi(t; Pr) = Xi(t; Po)ll > | Ai(t; Po)(Pr = Po)|| — e1[| Py — Poll*.
By Lemma 1 we then get
1Xs(t; P1) = Xi(t; Po)ll > kal| Py = Pol| = ed|| Py = Polf*.
It follows that
1Py = Poll < 1/ (2e1) = [[Xi(t; Pr) — Xa(t; Po)l > (ka/2)IIP - Poll.

Further, since the functions || X;(t; P1) — X;(t; Po)|| are strictly positive and contin-
uous on the compact set

{(t,P,P) : t €[0,1], P, P € T, ||PL — Po|| > k1/(2¢1)} C R®
we conclude that there exists a constant ¢o > 0 so that
1Xi(t; P1) — Xi(t; Po)l| > c2 > eo||Pr — Bol|/diam(T)

for all P, and Py with ||P, — Py|| > k1/(2¢1) and for all ¢. Here diam(7") denotes
the diameter of the triangle 7. Now, taking k3 = min{cy/diam(7), k1 /2}, the first
inequality in the statement of the lemma is satisfied.

The second inequality follows from the mean value theorem. In fact, one may
take k4 = ko, based upon standard arguments.?? O



Lemma 3 If S;(t) and S;(t) are non-adjacent (i.e., disjoint) patches, then there
exists a 61 > 0 such that

1X:(t; P1) — X;(t; Po)ll > 01

for allt and all Py, Py € T.

The proof follows immediately by continuity and compactness.

Next consider two adjacent patches S;(t) and S;(t). We introduce the notation
T; = X; 1(Si(t) N S;(t)) € 8T and T; = X; *(Si(t) N S;(t)) C OT for the inverse
images in parameter space of the intersection. By Assumption 3, I'; and I'; are
either both edges or both vertex points in 7 and independent of ¢. For the case
when they are edges, let g; and g; be unit vectors parallel to I'; and I'; respectively.
Lemma 4 Consider first the case when I'; and T'; are edges. Then if 55 € (0,1)
is given, there erists a constant €1 > 0 with the following property. For any point
X = X;(t; P;) = X;(t; P;) € S;(t) N S;(t), any vectors e;, e; pointing from P; and
P; respectively into T or along the boundary of T and satisfying the inequality

lei - gil + lej - gj| < d2{lleill + llesll} (1)
and for all t € [0, 1], the following inequality is valid:
1Ai(t; Pi)ei — A;(E Py)ejll > ex {1l Ai(t; Po)esl| + [|A; (2 Py)ejll} - (2)

Next consider the case when T'; and T'; are both vertex points, I'; = {P;}, and
T; = {P;} in T. Then for some constant €, > 0 the inequality (2) is valid for all
vectors e; and e; pointing from T'; and T'; into T .

Proof. By homogeneity, it suffices to prove the lemma when ||e;|| + ||e;|| = 1.

Assume first that I'; and I'; are edges and that the statement of the lemma
is false. By Lemma 1 the factor ||A;(t; P;)e;|| + ||4;(¢; Pj)e;|| in the right side of
equation (2) is bounded. We then conclude that there exist sequences t,, € [0,1], €,
and ej, € R?, satisfying (1) and with ||e;,|| +|lejn]| = 1 and P;, € T';, Pj,, € T; such
that ||A;(tn; Pin)ein — Aj(tn; Pin)ejnl| = 0 as n — oco. By selecting subsequences
and using compactness we may assume that t, — t € [0,1], P, — P; € Ty,
Pj, — P; €T}, e;n — €; € R? and e;, — e; € R?, with ||e;|| + |le;|| = 1. Since the
matrices A;(¢; P) and A;(¢; P) depend continuously on ¢t and P it follows that

Ai(t; P,)ez - Aj (t; Pj)ej =0. (3)

By continuity of the inner product and the norm it also follows that the inequal-
ity (1) is valid for the limits e; and e;. Further, at least one of the vectors e; and e;
is different from the null-vector and hence, by Lemma 1 and (3), both of them are.
By inequality (1) at least one of the vectors e; and e; points into the interior of 7°
and therefore, equations (1) and (3) show that we can construct curves emanating
from X with properties contradicting Assumption 2 and Definition 2.

For the case that I'; and I'; are vertex points the argumentation is similar, using
Assumption 2. In this case we do not need the inequality (1) to guarantee that the
limits e; and e; point into the énterior of 7. The details are omitted. O



The next lemma, is a reformulation of the geometric property that two adjacent
patches are nontangential with disjoint interiors.

Lemma 5 There exists a constant k > 0 such that (for adjacent patches)
1X(8; Pi) — X;(8 Py)|| >
rmin{ || X;(t; P;) — X|| + [1X;(6 ;) — X|| - X € Si(¢) N S;(2)}

for all P;, P; € T, and all t € [0,1].
Proof. Assume that the statement is false. Then there exist sequences &, > 0,
tn €[0,1], Pin € T and Pj, € T such that, as n — oo, k, = 0 and

||Xz(tnapm) - Xj(thPjn)” <
Kn IN{|| X (tr; Pin) — X[ + | X;j(tn; Pjn) — X : X € Si(t) N S;(8)}. (4)

Since the quantity || X;(¢tn; Pin) — X|| + ||X;(tn; Pjn) — X|| is bounded, it follows
that X;(tn; Pin) — X;(tn; Pjn) = 0 as n — 0.

Selecting convergent subsequences, such that ¢, = ¢, Py, = P;, Pj, — P; we
may conclude that

X,(t,P,) = Xj(t;Pj) € Si(t) N Sj(t) and P; € i, P; €Ty.

Now first take Qi € I'; so that || P, — Q4p| is minimal and then take Q;, € T'; so
that X;(tn; Qin) = X;(tn; Qjn) € Si(t) NS;(¢t). Since Py, — P; € T, it follows that

and, by Lemma 2, that X;(t,; Pi,) — X;(tn; Qin) — 0 as n — 0o. Then, also,

Xj(tn3 an) - Xj(tTL;Pjn) = Xi(tn§ Qm) - Xj(tn; Pjn) =
(Xi(tn; Qin) — Xi(tn; Pin)) + (Xi(tn; Pin) — Xj(tn; Pjn)) = 040 =0.
This implies, again by Lemma 2, that
Qjn — Pjn =0 (6)
as n — oo. Further
Xi(tn§ Pzn) - Xj (tn; Pjn) =

Xi(tn; Pm) - Xi(tn; Qm) + Xj(tn3 QJTL) - Xj(tn; Pjn) =

Ai(tn5 Qm)(Pm - an) - Aj (th an)(PJn - Q]n) +

(Xz'(tn3 Pm) - Xi(tn; Qm)) - Ai(tn§ Qm)(Pm - Qm) +

_(Xj(tn;Pjn) - Xj(tn§ Q]n)) + Aj(tn;an)(Pjn - Q]n)

By Taylor’s theorem, we have for some constant ¢y,

| Xi(t; Pi) — X;(t; P) — Ai(t; P)(P; — P)|| < c4||P; — P|?



for all P;, P € T and for all ¢t and all i. We then get
”Xi(tn; Pm) - Xj(tn§ Pjn)” >
”Ai(tn; Qm)(Pzn - Qm) - Aj (tn; an)(Pjn - Q]n)” -
c4(||Pzn - an“2 + ||Pjn - an||2)

By the choice of Q;, it is clear that the condition (1) of Lemma 4 is satisfied for
some &2 € (0,1), with e; = Py, — Qi and e; = Pj,, — Q. Using also Lemma 1, we
conclude that, for some constant ¢; > 0

15t Pin) = X (ts Pyl
kre1([|Pin = Qinll + 1P — Qjnll) = ca(||Pin = Qinll* + 1Pjn — Qjnll*)- (7)

Now combining (7) and (4) we have

kre1(|1Pin — Qinll + |1Pjn — Qjnll) — calllPin — Qinl® + | Pjn — Qjnll*) <

K:n{“Xi(th -Pzn) - Xi(tn§ an)” + ||XJ (tn§ -Pjn) - Xj (tn; QJn)”}

Finally, using Lemma 2, we conclude that

k€1 (1P — Qinll + |Pjn — Qjnll) — ca(lPin — Qinll* + | Pjn — Qsnll?) <

tnks (|| Pin — Qinll + |Pjin — Qjnll)

which, by (5) and (6) gives a contradiction as n — co. This completes the proof.
O

4.2. Main Lemma
We now give the main lemma. To establish the notation, consider the mappings
fe: K(0) = K(t)
defined by Assumptions 1 and 2 and
fe

Similarly, let f, denote the mappings

s:(0) = Xi(t) o X7 (0).

K3

fis: K(s) = K(t) C R®

given by f; s = fi o f; ! or, equivalently fis|s,(s) = Xi(t) o X;!(s). We have

fv=fros fip=Idxw, and fir = fiso fsr
Similarly, let I; s : K(s) — R? be defined by the mapping of p into fis(p) —p =
l;,s(p) € R3, i.e., so that
ft,s = IdK(s) + lt,s-
Further, if p = p(0) € K(0) is given, let p(t) = f;(p), and, similarly, q(t) = fi(q).
Clearly

le,s(p(s)) = p(t) — p(s).



Lemma 6 For every 8 > 0 there exists a § > 0 such that

12,5 (p(s)) — Le.s(a(s))Il < Bllp(s) — q(s)l|

whenever p(s) and g(s) € K(s) and |t — s| < 0, i.e., so that l;s is a Lipschitz
mapping with constant (3.

Proof. The proof is divided into three cases.
a. p(s) and ¢(s) in the same patch: p(s) € Si(s), ¢(s) € S;(s).

b. p(s) and ¢(s) in adjacent patches: p(s) € Si(s), q(s) € S;(s), Si(s) and S;(s)
are adjacent.

c. p(s) and ¢(s) in disjoint patches: p(s) € Si(s), q(s) € S;(s), Si(s) N S;(s) = 0.
Case a: With the previous notation we may write, for some 1,
p(S) :Xi(s;Pl)a q(S) :Xi(S;PO)a

p(t) = X;(t; Py), q(t) = Xi(t; Po),
with P, and Py € 7. Then

It,s(p(8)) —lt,s(q(8)) =
p(t) — p(s) — (a(t) —q(s)) =
Xi(t; Pr) — Xi(s; Pr) — (Xi(t; Bo) — Xi(s; o))
Xi(t; Pr) — Xi(t; Po) — (Xi(s; Pr) — Xi(s; Po))
G(t, Py, P) — G(s, P, P1)

where we have introduced the vector-valued function
G(t, Py, P1) = X;(t; P1) — Xi(t; Po).-
Now,2?
G, Po, P1) = G(s, Po, PI| < [t = sl sup { G0, Po, )| 5 < 6 < t]

where the dot denotes differentiation with respect to ¢. Further, by Assumption 1
and the fact that X; p is in C?(Q2x T) it follows that the mixed derivatives X,», p = A;
are in C([0,1] x T) and hence bounded. Since G(t, Py, P,) = Xi(t; P) — X;(t; Pp),
we conclude 23 that there exists a constant ¢4 so that

G0, P, o) = | X;:(6; P1) — Xi(6; Po)|| <
sup{||4;(6; (1 = )Py +rP)|| : 0 < r < 1}|| P, — Bol| € eu||PL — Bol|-

Consequently
e, (p(s)) — le,s(a()) < calt — s - || Py — Fol|

10



for all ¢t, s, Py and P;. By Lemma 2, there exists k3 > 0 such that
k|| Py — Po|l < [IXi(s; P1) — Xi(s; Po)ll = llp(s) — a(s)l|-

Therefore,
lle,s(p(s)) — le,s(a(8))]| < calt — s| - |Ip(s) — q(s)]|/ks-

Taking & = Bk3/cy completes the argument for Case a.

Case b: Now we may write
p(S) :Xz(S,R), q(s) :Xj(s;Pj)a

p(t) = Xi(5; Pi), qt) = X;(t P)),

with P; and Pj eT.

Now, for a fixed s, let r = r(s) be the point in S;(s) N S;(s) which minimizes
the expression ||p(s) —r|| + ||g(s) — || (cf. Lemma 5). Let r(¢) = l; s(r) = l;,5(r(s)).
Then arguing as in the previous case we obtain

llEe,s(p(s)) — Lt,s(a(s)]] <
1lt,5(P(s)) = Le,s (r())Il + llls,5(q(s)) = Le,s(r(s))]| <
calt = s|{[lp(s) — r(s)ll + lla(s) — r(s)I1}/ks.

Then, by Lemma 5, we get

llet,s(p(s)) — Lt,s(a(s))I| < (calt — s|/(k3r))[lp(s) — a(s)ll
and taking & = Brks/cs completes the argument for Case b.
Case c: We have, with notation as in Case b,
lt,s(p(s)) - lt,s(q(s)) =
Xi(t; P;) — Xi(s; Pi) — (X;(t; Py) — X;(s; Fy)).

Here, the right hand side is a continuous function of (¢,s, P;, P;) € [0,1]*> x T2,
which is zero when s = ¢t. By uniform continuity, given any € > 0, there exists § > 0
such that

|t —s| <& = [ll,s(p(5)) — li,s(q(s))]| <

By Lemma 3, ||p(s) — ¢q(s)|| > 61. Taking e = 3d; we conclude that

|t —s| <& = [|ls,s(p(5)) — le,s(a(s))|| < Bllp(s) — a(s)ll-

Finally, choosing § as the minimal value obtained in the Cases a, b and ¢ and for
all combinations of 7 and j, completes the proof of Lemma, 6. O
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4.8. Proof of Theorem 1

It suffices to prove that K (1) is linked by an ambient isotopy to K(0). Let 8 €
(0,1) be given. Consider a subdivision 0 =t < t; < ... <t; <tjp1 < ... <ty =1
of the interval [0, 1]. We introduce the shorter notation

li = lti+1,t“ f’L = fti+1,ti7 and f = fl,O'

Then f; = Ids;) +1is f = fu—10 fm—20...0 fio...0 foand f; : K(t;) = K(tit1)
is a homeomorphism, as well as f : K(0) - K(1). By Lemma 6 we may choose the
subdivision so that

li(p) = Li(@)Il < (B/3)llp -l

for all pand g € K(t;),1<i< M.
We invoke the following Extension Lemma, due to Whitney 25 and McShane.26
We also indicate the proof, which is elementary.

Theorem 2 Let K be an arbitrary subset of a normed linear space B. Further, let
l: K — R be a Lipschitz mapping with constant vy, so that,

() = 1(y)] <~llz =yl

for all x and y € K. Then there exists an extension l : B — R so that

(@) = U(y)| <Alle —yll
for all z and y € B and so that [(z) = I(x) for all z € K.
Proof. It is straightforward to verify that the choice
I(z) =inf {I(z) + y|lz — 2|| : z € K}
or
l(z) = sup{l(2) —7llz — 2] : 2 € K}

will do. O
Applying this lemma to each component of [;, with v = 3/3, we conclude that
there exist extensions {; : R® — R such that

11 (p) — Li(g)ll < Bllp— 4l
for all p and ¢ € R?, and so that [j| ;) = l;.

Proof of Theorem 1:
Fort =t;,1 <i< M, take f; = Idgs +[;, and for t € (t;_1,1;], define

- t—tiq ~

fi(t) = Idgs + tizllz

% i—1

ff_t{',-‘_ﬂ < 1, fi(t)—Idgs is a contraction mapping, and we may apply

Since 8 < 1 and

the contraction-mapping principle 27 to conclude that f;(t) is a homeomorphism
from R3 to R? for t € (t;_1,t;]. Here, the contraction-mapping principle states that

12



given a mapping T : R® — R? with ||T(z) — T'(y)|| < &l|z — y|| for some x € [0,1)
and for all z and y € R3, then there exists a unique x, € R® such that T(z,) = z;
this result can be easily applied in our case to show that f;(¢) has a continuous
inverse. Now, for ¢t € (;_1,t;], define

F(t)= fio fic10 firao...0 fi(t)

and F(0) = Idgs. Tt is clear that F(t), 0 <t < 1, gives an ambient isotopy between
K(0) and K(1). O

In order to prove Corollary 1, we need only redefine the previous mappings f; s
and l; ; so that they are equal to the identity and the null-function respectively
on the complement of O, and make a corresponding modification of the proof of
Lemma 6.

5. Conclusion

In this paper we have provided sufficient conditions that a perturbation of a
given object, which is the finite union of properly-joined two-dimensional curvilin-
ear simplexes in R3, retains its topological form, i.e., that there exists an ambient
isotopy linking the original and perturbed objects. The conditions essentially re-
quire that the original object should be continuously perturbed into its new position
in such a way that no self-intersections or extraneous intersections are introduced,
and in particular, adjacent patches remain nontangential.
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