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1. Introduction

The emphasis here will be upon how point-set topology can be applied to
computing on geometric objects embedded in R3. The fundamental topological
concept of a neighborhood generalizes limits over the reals, which inherently relies
upon infinite precision arithmetic. Any specific computational representation of a
real number is limited to being expressed in a finite number of bits. This cardinality
disparity means that fundamental topological notions such as neighbhorhoods,
dense sets and continuity are not well-expressed computationally, but can only
be approximated. This presents novel opportunities for complementary research
between topologists and numerical analysts.

The article Computing over the reals: foundations for scientific computing [33]
begins,

“The problems of scientific computing often arise from the study
of continuous processes, and questions of computability and
complexity over the reals are of central importance in laying
the foundation for the subject.”

The use of floating point numbers as an approximation of the reals entails
a radically different perspective for classical point-set topologists, as the central
topological notions regarding the interior, exterior and boundary of a set are based
upon limits of infinite sequences of neighbhorhoods. These ideas are also crucial
for geometric computations. Past practice can be somewhat tersely oversimplified
as saying that the cardinality disparities have long been appreciated, but have
been treated largely in an ad hoc fashion. Engineering practice and pragmatic
programming, generally directed by heuristics, have been the dominant practice.

The definition adopted here for computational topology comes from the report
Emerging challenges in computational topology [21]. (Also see Section 13.)

“We intend the name computational topology to encompass
both algorithmic questions in topology (for example, recogniz-
ing knots) and topological questions in algorithms (for example,
whether a discrete construction preserves the topology of the
underlying continuous domain).”
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Figure 1. Box and cylinder

The broad definition is intended to prompt a “beneficial symbiosis” [63] be-
tween both subfields and “to extend computational geometry . . . into contact with
classical topology” [21] with expected benefits to both fields. The subdiscipline
of computational topology is relatively young. This very immaturity provides an
important opportunity to consider its foundations as well to explore pernicious
specific problems that remain unresolved.

2. History

The first usage of the term ‘computational topology’ appears to have occurred
in the dissertation of M. Mäntylä [120]. The focus there was upon the connective
topology joining vertices, edges and faces in geometric models, frequently also
informally described as the symbolic information of a solid model. These vertices,
edges and faces are discussed as the operands for the classical Euler operations.

2.1. Elementary manifold examples. In Figure 1, the box depicted on
the left would have 8 vertices, 12 edges and 6 faces. This should be obvious, while
the cylinder shown on the right entails an additional minor subtlety. Namely, the
cylinder can be considered to be composed of an open cylinder and a top disc and
a bottom disc. To include explicitly vertices and edges, the open cylinder will
often be considered to be formed from a flat rectangle which has been rolled into
a cylinder, with two opposing edges identified as one. This one edge would be
vertical in the image on the right and would have a vertex at each end. Each disc
would then be seen as having a circular bounding edge that had its initial and
terminal vertex at one of these points on the vertical edge. This representation
would then have 2 vertices, 3 edges and 3 faces (though other variants are clearly
possible).

2.2. Non-manifold topology. Manifolds have a rich history in topology.
They provide extensions of the usual topology on Cartesian products of the re-
als. Moreover, manifolds provide a generalization whereby points, curves, surfaces
and solids have a common abstraction, but vary in dimension (from 0 to 3, respec-
tively). Within the Boolean algebra of regular-closed, compact 3-manifolds, curves
and surfaces are nowhere dense sets – meaning that the interior of their closures is
empty within R3. Hence, these sets are trivial operands within that algebra. So,
strict adherence to a programming paradigm, based upon this Boolean algebra of
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Figure 2. Model with non-manifold topology

3-manifolds would not admit directly the mixing of manifolds of differing dimen-
sion. Pioneering work by K.J. Weiler in his thesis [176] describing ‘non-manifold
topology’ laid the intellectual framework for his initial prototype and extensive
follow-up work by F. Printz in his ‘Noodles’ system [88].

Figure 2 shows how the manifolds of differing dimensions could be integrated
in these systems to form one integrated geometric model. Each point need not
have a neighborhood that is homeomorphic to a neighborhood in a 3-manifold (For
3-manifolds without boundary, these neighborhoods are just open neighborhoods
of R3 and for 3-manifolds with boundary, the neighbhorhoods just have the usual
relative topology associated with a boundary point). However, each point does
have a neighborhood that is homeomorphic to an open neighborhood in an n-
manifold, with n being equal to the lowest dimension of any of the manifolds
joined at that point.

Question 2.1. Is there a unifying topological abstraction covering manifolds, non- 1110?

manifolds and other possible geometric models that might be useful to improve
algorithmic design for geometric computations?

Some other relevant references in the development of computational topology
are listed [13, 50–52, 57, 59, 137–139, 172].

3. Computation and the reals

Whenever computations are intended to be representative of operations on
the reals, inherent concerns are the trade-offs required between algorithmic effi-
ciency and sufficient numerical precision. This dilemma is discussed [33] relative
to using a satisfactory number of terms from a Taylor’s series approximation. The
summarizing directive is “to take just enough terms to satisfy our precision needs.”

3.1. The role for tolerances. This same issue has been expressed within
venues of the Society of Industrial and Applied Mathematics (SIAM) by the math-
ematician D.R. Ferguson and the engineer R. Farouki. Ferguson has observed
that geometric models used in aeronautical and aerospace design require differing
precisions depending upon the application software that is using such models for
input [75]. His focus is upon the number of significant digits needed in order to
have appropriate representations at topological boundaries formed from surface
intersections. A broad overview of this concept is illustrated in the table in Fig-
ure 3. There the minimum precision needed for each application is given. Farouki
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Application Significant digits
visualization 2
computational fluid dynamics 3
multidisciplinary design optimization 4
computational electromagnetics 4
computational optics 7

Figure 3. Precision for differing applications

has espoused a similar point of view [74], based upon issues raised at a SIAM
workshop that he and Ferguson organized with funding from the National Science
Foundation (NSF).

This perspective raises several fundamental problems:

Question 3.1. What are the differing floating point precisions needed to capture1111?

accurately the topology along surface intersection boundaries in geometric models
so that they can be reliably used in engineering simulations for visualization, com-
putational fluid dynamics, stress analysis, computational optics, computational
electromagnetics, etc.?

Question 3.2. Are there crucially sensitive engineering applications that can be1112?

used to determine these precision needs? (For instance, are visualization and
computational optics at extreme ends of the precision spectrum? Is understanding
the needs of those two applications then sufficient for the conceptual framework
for all modeling needs?)

Question 3.3. Are some geometric intersection problems ill-conditioned?1113?

Question 3.4. Will the process of finding the precision required for the models for
these engineering simulations generalize to a mathematical methodology for being
able to determine floating point precision needs for a wide variety of geometric
models, inclusive of examples such as fractals and Julia sets?

We note some abstractions that are appropriate for topologists. Individual
computer science algorithms might be considered as specific functions, with dis-
tinctive domains and images. Even this level of abstraction is rarely articulated
within computer science. Moreover, this view belies a cultural distinction between
the computer science (CS) and mathematical communities. Topologists often fo-
cus attention of an entire family of functions, analyzing properties shared by an
entire class of functions. For instance, homeomorphisms form an important such
class within point-set topology, forming the basis for the traditional definition of
topological equivalence. This broader approach, considering whole classes of algo-
rithms, would be one way that topological perspectives can enrich CS. The process
of going from one algorithm to another is then merely modeled by composition of
functions. An example of how this view might also be useful in computer graphics
is presented in Section 4.
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Figure 4. Subtraction of two sets

3.2. Engineering examples for computational topology. The material
of this subsection is largely extracted from a related article [137] in order to intro-
duce topologists to prominent engineering examples for computational topology.

The Boolean algebra of regular closed sets is prominent in topology, particu-
larly as a dual for the Stone–Čech compactification. This algebra is also central
for the theory of geometric computation, as a representation for combinatorial
operations on geometric sets. However, the issue of computational approximation
introduces unresolved subtleties that do not occur within pure topology.

The standard algorithmic operators on regular closed set representations are
those from its Boolean algebra. These Boolean operations have an elegant symbolic
representation in a binary tree, but do not typically include error bounds on
the leaf node operands, which appears to fall within Knuth’s definition [104] of
algorithms being “properly called seminumerical because they lie on the borderline
between numeric and symbolic calculation.” This disparity between the theory and
practice on this Boolean algebra is a central aspect of the “geometric robustness”
problem [96].

The regular closed sets discussed here will be assumed to be subsets of R3,
with its usual topology. The Boolean algebra of regular closed sets in R3 will be
denoted as R(R3). Furthermore, any regular closed set considered will be assumed
to be compact. Any surfaces and curves considered will be assumed to be compact
2-manifolds and 1-manifolds, respectively. All neighborhoods will be assumed to
be open subsets of R3.

The theoretical role for R(R3) was introduced into geometric computing to
correct the unexpected output seen from combinatorial operations on geometric
sets [148]. For instance, consider the two dimensional illustration shown in Fig-
ure 4. The original operands of A and B are indicated in Figure 4(a). The
unexpected output is shown in Figure 4(b), where the expected result would have
been what is shown in Figure 4(c).

The phenomenon shown in Figure 4(b) was informally described as “dangling
edges” [173]. The formalism that was proposed to eliminate this behavior was
that geometric combinatorial algorithms should accept only regular closed sets as
input and then execute the Boolean operations of meet, join and complementa-
tion on these operands, thereby creating only regular closed sets as output [170].
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Figure 5. Tree for (A ∧B) ∨ (C−D).

The intent was to eliminate “dangling edges” and, in principle, this should have
been sufficient.1 However, each operand also has a geometric representation that
depends upon the approximation methods used to compute the results. This ad-
ditional subtlety raises issues in both theory and computation.

An earlier survey on topology in computer-aided geometric design [139] is
recommended as introductory material for topologists. The texts [96, 136] discuss
the integration of computational geometry, shape modeling and topology.

3.2.1. Theory versus computation. One elegant computational representation
for the combinatorial operators is to assign each object a symbol and then to
indicate operations in a tree referencing those symbols. For instance, such a tree
structure could be as depicted in Figure 5.

At this level of abstraction, the mathematical theory and the computational
representation are completely consistent, and this representation became known
as Constructive Solid Geometry (CSG). Difficulties arose in instantiating the basic
geometric information that is represented by the operands at the leaf nodes and,
sometimes, in computing geometric representations at the internal nodes of the
tree. In CSG, the leaf nodes are restricted to a small set of specific geometric
objects, known as primitives. A typical collection of primitives might consist of
spheres, parallelepipeds, tori and right circular cylinders. The critical geometric
algorithm underlying each Boolean operation is the pairwise intersection between
the operands.

As the boundary of each of these primitives can be represented by linear or
quadratic polynomials, the needed intersection between each pair of primitives
was relatively simple and numerically stable, for most cases considered, although
specific intersections could be problematic. For instance, suppose two cylinders of
identical radius and height were created and then positioned so that the bottom
of one cylinder was coincident with the top of the other cylinder. This special
case was specifically considered in most intersection algorithms and could usually
be processed without problem. However, if one then rotated the top cylinder
a fraction of a degree about its axis (so that the planar coincidence remained
intact) many software systems would fail to produce any output for this problem,

1The subtraction operation between two sets, shown as A−B in Figure 4, is not specifically a

Boolean operation. However, the use of A−B should be understood to be conveniently shortened
notation equivalent to the operations A∧B′, where B′ represents the standard Boolean operation

of complementation on the operand B.
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sometimes even causing a catastrophic program failure. This particular problem
became a celebrated test case and most systems developed ad hoc methods to
solve this cylindrical intersection problem. Yet, this was just avoiding the more
serious issue of the fragile theoretical foundations for many intersection algorithms.
People using CSG systems became sensitive to their limitations and continued to
use them effectively by avoiding these challenging circumstances, although the
work-arounds were often tedious to execute.

The imperative, largely initiated by the aerospace and automotive industries,
to model objects using polynomials of much higher degree than quadratic created
a movement away from CSG systems. The alternative format was to represent
compact elements of R(R3) by their boundaries, and this became known as the
“boundary representation” approach, or “B-rep” for short. This has become the
dominant mode today. Again, within this clean conceptual overview, the realities
of computation pose some subtle problems. In most industrial practice, the mod-
eling paradigm was further restricted so that the boundary of an object was a
2-manifold without boundary. However, it was difficult to create computer mod-
eling tools that could globally define 2-manifolds without boundary, though there
existed excellent tools for creating subsets of these 2-manifolds. For example,
computational tools for creating splines were becoming prevalent [141]. Again,
in principle, if each such spline subset was created with its boundaries, then the
subsets could be joined along shared boundary elements to form a topological
complex [95] for the bounding 2-manifold without boundary.

The inherent computational difficulty was to create separately two spline
patches, each being a manifold with boundary, so that the corresponding bound-
ary curves were identical and could be shared exactly between the patches. In
some situations, algorithms for fitting spline patches were used successfully. In
other cases, patches have been enlarged slightly and intersected so as to obtain
improved fits. Indeed, such intersections are well-defined in pure mathematics, but,
again, approximation in computation poses subtle variations from that theory, as
described in the next section on pairwise surface intersection.

3.2.2. Subtleties of pairwise spline surface intersection. It is well known that
unwanted gaps between spline surfaces or self-intersections within intended mani-
folds often appear as artifacts of various implemented intersection algorithms [74].
The mismatch between approximate geometry and exact topology has historically
caused reliability problems in graphics, CAD, and engineering analyses, drawing
the attention of both academia and industry. The severity of the problem increases
with the complexity of the geometric data represented, both from high-degree non-
linearity and from the intricate interdependence of shape elements that should, but
do not, fit together according to the specified topological adjacency information.
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Figure 6. Spline surface interection

The conceptual view of these joining operations is illustrated in Figure 6(a),
with an intersection curve2 illustrated as a single curve. But this image only exem-
plifies the idealized, exact intersection curve. For practical computations, an ap-
proximation of the intersection set is often created [85, 86] and, in many systems,
an intersection curve will be approximated twice. These two approximations are
created corresponding to each of the spline functions, denoted as F : [0, 1]2 → R3,
and G : [0, 1]2 → R3, whose images are the surfaces being intersected. Specifically,
a spline curve, denoted as c1, is created so that c1 ⊂ [0, 1]2 and the image of c1 by
F , denoted as F (c1) approximates the intersection curve, (with similar meaning
given to c2 ⊂ [0, 1]2 and G(c2)). It is virtually certain that those approximations,
F (c1) and G(c2), will not be exactly equal in R3, as shown in Figure 6(b).

The mismatch between concept and reality discussed above, can cause ambi-
guity, as the intersection representation is sometimes considered as a unique set,
from the conceptual view, and at other times as two approximating sets, from an
algorithmic view.

3.2.3. Error bounds for topology from Taylor’s theorem. First, we present the
Grandine–Klein (GK) intersection algorithm [86]. Referring to Figure 6, we note
that the GK algorithm bases its error bounds on well-established numerical tech-
niques in differential algebraic equations (DAE). While these DAE techniques
provide rigorous error bounds, these bounds are expressed within the parameter
space [0, 1]2, which serves as the domain of the spline functions (indicated as F and
G, above). The code implementing the GK algorithm then has an interface that
allows the user to specify an upper bound ε for the error within parameter space
and the algorithm provides guarantees for meeting this error bound. However, the
typical end user is often not fully aware of the details of the parametric definitions

2We focus on the generic case of an intersection curve, although isolated points and coinci-

dent areas can also arise, with similar complications.
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of F and G, so selection of this parametric space error bound has often relied upon
heuristics. It would be more convenient for the user to be able to specify an error
bound within R3. One accomplishment within the I-TANGO [137] project has
been to demonstrate a mathematical relation [133] between the error bounds in
R3 and [0, 1]2, following from a straightforward application of Taylor’s Theorem
in two dimensions. The conversion between these error bounds has been imple-
mented in a preprocessing interface to the GK algorithm and this new interface
has been tested to be reliable, efficient and user-friendly.

Using the notation from Figure 12 for the spline function F , Taylor’s Theorem
provides a bound on the error of F evaluated at a particular point (u, v) versus
F evaluated at a point (u0, v0), where (u, v) and (u0, v0) are within a sufficiently
small neighborhood. This sufficiently small neighborhood will have radius given by
the value in the parametric domain [0, 1]2 which was denoted as ε in the previous
paragraph. Then it follows [133], with ‖·‖ being any convenient vector norm, that

‖F (u, v)− F (u0, v0)‖ ≤ εM
for any M satisfying ∥∥∥∥

∂F

∂u
(u∗, v∗)

∥∥∥∥+

∥∥∥∥
∂F

∂v
(u∗, v∗)

∥∥∥∥ ≤M,

for some point [u∗, v∗] on the line segment joining [u, v] and [u1, v1].
For the single spline F , let γ(F ) be an upper bound for the acceptable error

in R3 between the true intersection curve c and one of its approximants F (c1). In
order to guarantee that this error is sufficiently small, it is sufficient that εM ≤
γ(F ), where an upper bound for M can be computed by using any standard
technique for obtaining the maximums of the partials ∂F

∂u and ∂F
∂v . For G, a

similar relation between γ(G) and ε exists.3

Then it is clear that a neighborhood can be defined that contains the true
intersection curve c and both of its approximants. Let Nγ(F )(F (c1)) be a tubular
neighborhood of radius γ(F ) about F (c1), where c1 has been generated from
the GK intersector to satisfy the inequality presented in the previous paragraph.
Similarly, define Nγ(G)(G(c2)). Then, let N(c) = Nγ(F )(F (c1)) ∪Nγ(G)(G(c2)).

It is clear that N(c) is a neighborhood of c, which contains both of its approx-
imants, F (c1) and G(c2). However, there is both a theoretical and computational
limitation to this approach.

• There is no theoretical guarantee that either approximant is topologically
equivalent to c, and

• Any practical computation of N(c) would depend upon an accurate com-
putation of the set Nγ(F )(F (c1))∩Nγ(G)(G(c2)), which is likely to be as
difficult as the original computation of F ∩G.

While the above bounds are often quite acceptable in practice to compute a rea-
sonable approximant, further research has been completed into alternate methods

3This error bound assumed that the error due to algorithmic truncation within the numerical

DAE methods dominated any other computational errors.
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Figure 7. 2D versions of properties of interval solids

to give guarantees of topological equivalence within a computationally acceptable
neighborhood of the intersection set, as reported in the next subsection.

3.2.4. Integrating error bounds and topology via interval solids. Recent work
by Sakkalis, Shen and Patrikalakis [153] emphasized that the numeric input to
any intersection algorithm has an initial approximation in the coordinates used to
represent points in R3, leading to their use of interval arithmetic [136]. The basic
idea behind interval arithmetic is that any operation on a real value v is replaced
by an operation of an interval of the form [a, b], where a, b ∈ R and a < v < b.
The result of any such interval operation is an interval, which is guaranteed to
contain the true result of the operation on v. This led naturally to the concept of
an interval solid and some of its fundamental topological and geometric properties
were then proven, as summarized below.

Throughout this section, a box is a rectangular, closed parallelepiped in R3

with positive volume, whose edges are parallel to the coordinate axes.4 Let F be
a nonempty, compact, connected 2-manifold without boundary. Then the Jordan
Surface Separation Theorem asserts that the complement of F in R3 has precisely
two connected components, FI , FO; we may assume that FI is bounded and FO is
unbounded. Let also B = {bj : j ∈ J} be a finite collection of boxes that satisfies
the following conditions:

C1: {int(bj) : j ∈ J} is a cover of F .
C2: Each member b of B intersects F generically; that is, b ∩ F is a

nonempty closed disk that separates b into two (closed) balls, B+
b and

B−b , with B+
b , (B−b ) lying in FI ∪ F (FO ∪ F ), respectively.

C3: For any bi, bj ∈ B, let bij = bi ∩ bj . If int(bi) ∩ int(bj) 6= ∅, then bij is
also a box which satisfies C2.

Notice that condition C2 indicates that every b ∈ B intersects F in a natural
way (see Figure 7).

The following result summarizes several previously appearing results, where a
solid is defined to be a nonempty compact, regular closed subset of R3.

4Enclosures other than boxes are quite possible and this is a subject of active research.



Correctly embedded approximations for graphics & applications 503

Figure 8. 2D version of proper subset condition

Theorem 3.1 ([153, Corollary 2.1, p. 165]). If F is connected and B satisfies
C1–C3, then F ∪⋃j∈J bj is a solid.

Bisceglio, Peters and Sakkalis [151, 152] have recently given sufficient con-
ditions to show when the boundary of an interval solid is ambient isotopic to
the well-formed solid that it is approximating, as described in the following the-
orem. To do so, they define a parameter, denoted here as, γ, which is based
upon curvature and critical values of an energy function. This value of γ then
permits the definition of non-self-intersecting tubular neighborhoods about the
original object for all values of r < γ, when r is a positive number for a con-
stant radius tubular neighbhorhood. For a positive number δ, define the open set
F (δ) = {x ∈ R3 : D(x, F ) < δ}, where D(x, F ) = inf{d(x, y) : y ∈ F}, with d
being the Euclidean metric in R3.

Theorem 3.2. Let F be a connected 2-manifold without boundary. For each
ε > 0, there exists δ, with 0 < δ < γ so that whenever a family of boxes B satisfies
conditions C1–C3, and for each b of B, b is a subset of F (δ) (see Figure 8) then,
for S = F ∪ FI and SB = S ∪ ⋃j∈J bj, the sets F and ∂SB are ε-isotopic with
compact support. Hence, they are also ambient isotopic.

The quoted theorem depends upon results from Bing’s book on PL topol-
ogy [22, p. 214], and related literature [103], as is explained in full [151, 152].
The proof shows that normals to F do not intersect within the constructed tubu-
lar neighborhood, as is illustrated by the depiction of its planar cross-section in
Figure 8.

If the boxes containing the true intersection curve can be made sufficiently
small so that each such box fits inside F (ρ), then the resulting intersection neigh-
borhood will contain an object that is both close to the true solid and is ambient
isotopic to it. Considerable success in meeting these constraints has already been
achieved [136, 152, 153].

4. Correctly embedded approximations for graphics & applications

Papers on tolerances in engineering design [31, 32, 166] raised the issue of
rigorous proofs for the preservation of topological form in geometric modeling,
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Figure 9. Nonequivalent knots

but these papers did not specifically propose ambient isotopy as a criterion. The
class of geometric objects considered was expanded appreciably by theorems for
ambient isotopic perturbations of PL simplexes and splines [14–16].

As an elementary example, there is an exact computational representation of
a unit circle centered at the origin, as x2 + y2 = 1. However, as soon as one
goes to create a computer graphics image of this circle, some approximation is
needed. The ultimate display on the screen is to ‘turn on’ a collection of pixels,
each being some very small rectangle. If these pixels are sufficiently small and the
approximation is sufficiently fine, then the user perceives a reasonable image of a
circle. This has many parallels to a human rendition of a circle, such as a pen and
ink image that approximates a circle. The criterion for success is largely subjective,
though it has been successfully codified in standard algorithms for this simple case
of the circle [77]. This technique does generalize to more difficult geometric shapes
which also have nice differentiable properties [37], but there remain difficulties in
the prevalent approximation paradigms, as will be discussed further, here.

However, there is a crucial distinction between the use of such images in
classical mathematics and in computer science. The adage in pure mathematics
is that ‘A picture is not a proof.’ Rather, the use of illustrations is meant to
guide discovery and intuition in order to lead to formal proofs. The situation
in computer science is quite different. Namely, the focus is upon the definition
and properties in creating specific algorithms to work on particular abstract data
types. Here, the data type is the equation of a circle, but this representation
is then approximated for graphics rendering. So far, this offers little distinction
to the classical case. However, the output of this approximation algorithm may
often be used by another algorithm. The approximation becomes the object of
interest. This could be translating the circle to another position or determining
its circumference. Both these operations are quite successful for the circle.

Indeed, even at the graphics display level, the concern for a ‘properly repre-
sentative approximation’ should not be dictated solely by subjective criterion, as
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Figure 10. Ambient isotopic approximation

can be shown in the following knot approximation example, which summarizes a
published example [13].

Many geometric approximation algorithms offer no guarantees about the topol-
ogy of the output. Sometimes it is guaranteed that the output is homeomorphic
to a desired manifold [10]. Indeed, in the simple circle example, essentially any
reasonable PL approximation of the cirle will be homeomorphic to it. However,
in graphics, any 3D image is projected onto a 2D display. One asks if this com-
position of functions will necessarily lead to a homeomorphic image. The answer
can be easily shown to be ‘no’ and supports the argument for a stronger form of
topological equivalence.

We argue here that a guarantee of homeomorphism is insufficient for many
of the applications for which the algorithms are designed. Rather, examples are
given for preferring a stronger equivalence relation based upon ambient isotopy.

Definition 4.1. If X and Y are subspaces of R3, then X and Y are ambient
isotopic if there is a continuous mapping F : R3 × [0, 1] → R3 such that for each
t ∈ [0, 1], F (·, t) is a homeomorphism from R3 onto R3 such that F (·, 0) is the
identity and F (X, 1) = Y .

For other fundamental terms, the reader is referred to the text [94].
Figure 9 shows an unknot, and its homeomorphic, but non-isotopic PL ap-

proximant, which is the knot with 4 crossings, known as 4m
1 . An improved approx-

imation is shown in Figure 10.
All end points of the line segments in the approximation are also points on the

original curve. In response to the example of Figure 9, a theorem was published
for ambient isotopic PL approximations of 1-manifolds [119], with an illustrative
outcome shown in Figure 10. The proof utilizes ‘pipe surfaces’ from classical
differential geometry [128].

Although any two simple closed planar curves are ambient isotopic, this knot-
ted curve as an approximant to the original unknot would be undesirable in many
circumstances, such as graphics and engineering simulations [15]. For instance,
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projected images of this approximation could have self-intersections, whereas the
original curve had none.

There is a related study of curves, comparing them to α-shapes [69] via ambi-
ent isotopies [150]. Recent work in support of molecular modeling appears in the
doctoral thesis of E.L.F. Moore and related publications [129–131].

Other problems arise for surfaces (2-manifolds) in three dimensions. Some
algorithms compute a triangulated surface C to approximate the boundary F of a
closed, finite volume, with a guarantee that C is homeomorphic to F [11, 12]. It
is well known that this does not guarantee that the complement of C, denoted as
R3 \ C, is homeomorphic to the complement of F , R3 \ F , meaning that there is
no guarantee that F and C are equivalently embedded in R3. An ambient isotopy
between C and F , on the other hand, provides such a guarantee.

The class of PL surfaces presents another domain in which topological guar-
antees are desirable. Even guaranteeing that the common edge contraction oper-
ator produces an object homeomorphic to its input requires some care for simpli-
cial complexes [52]. Preservation of genus during approximation by a polygonal
mesh [171] also requires considerable care.

Recent theorems [4, 5, 13] prove approximation techniques that preserve am-
bient isotopy over an important subclasses of 2-manifolds, covering cases both
with and without boundary. The role for ambient isotopy has been recognized by
the computer animation research community [80].

Question 4.1. Is ambient isotopy the appropriate topological equivalence relation1114?

for computational topology in computer graphics and animation?

Question 4.2. What geometric approximation algorithms can capture the topo-
logical equivalence needed in computer graphics and animation?

Question 4.3. Are the known algorithms for ambient isotopic of parametric1115?

curves optimal with respect to performance and space requirements?

Question 4.4. Are the known algorithms for ambient isotopic of parametric sur-1116?

faces optimal with respect to performance and space requirements?

Considerable work on isotopies in approximation has appeared, ranging over
applications from computer graphics, geometric modeling and surface reconstruc-
tion [38–40].

5. The role for differentiability

Although computational topology is a relatively new discipline [21, 172], it
has grown and matured rapidly partially because of its increasing importance to
many vital contemporary applications areas such as computer aided design and
manufacturing, (CAD/CAM), the life sciences, image processing and virtual real-
ity. It is leading to new techniques in algorithm and representation theory. These
applications are evoking new connections between mathematical subdisciplines
such as algebraic geometry, algebraic topology, differential geometry, differential
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topology, dynamical systems theory, general topology, and singularity and strati-
fication theory [1–3]. The tender age of computational topology renders it fertile
ground for a wide variety of challenging open problems—many of fundamental im-
portance. While the primary focus of this book and, of course, this chapter is upon
problems in general topology, the integrative nature of computational topology is
expressed here with some attention to the role of differentiability.

5.1. Introduction. Computational geometry preceded computational topol-
ogy as an indispensable theory and practice for solving difficult problems that have
arisen in CAD/CAM and other contexts that rely on computationally powerful
methods for analysis and accurate representation of various objects and configu-
rations. On the other hand, computational topology has only considerably more
recently risen to prominence in such applications [74]. The difference between
these two disciplines is roughly analogous to the difference between geometry and
topology, and can be rather effectively illustrated in the following terms: Whereas
computational geometry is concerned essentially with algorithmic (and a fortiori
computer implementable) methods for analyzing and producing representations
of geometric objects that are close—usually in some Whitney-like (piecewise) C2

sense—a primary focus of computational topology is to guarantee algorithmically
that a computer generated representation of an object is equivalent to the actual
object in an appropriate topological sense. In essence, computational geometry
is concerned with insuring the (differential geometric) closeness of the representa-
tion of an object to the original, while computational topology takes care of the
topological consistency of the rendering.

The importance of computational topology cannot be overestimated in certain
contexts and applications—many of which have achieved significant prominence
in the last few years. For example, suppose one wants to produce a computer gen-
erated representation of a water glass to be used in an automated manufacturing
process. The glass can be viewed in ideal form as a smooth surface in space with a
circular boundary, thus rendering it an object in a standard differential geometry
or topology category. An algorithm can readily be found that produces a repre-
sentation that is as close as desired (in some suitable Whitney-type topology) to
the designed glass, but still have in it a very small hole. This may be considered
satisfactory from the perspective of computational geometry, but certainly not
from the computational topology viewpoint, and the result obviously would lead
to shortcomings in the manufactured article.

In this section we shall identify several outstanding problems in computational
(differential) topology—all of which are of a rather fundamental nature—and we
also shall provide the necessary context and background for an appreciation of
these problems, along with some insights that should prove helpful in their res-
olution. As computational topology is still an emerging discipline and is largely
unknown to many in the computer aided geometric design, computer science, and
mathematics communities, we shall present a brief outline of the elements of com-
putational differential topology in Subsection 5.2, a description of the problem
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of identifying and classifying those objects in a category associated with compu-
tational differential topology in Subsection 5.3 and algebraic duals of previous
problems now expressed as issues in isomorphism type in Subsection 5.4. In par-
ticular, we treat in Subsection 5.4 those that possess a complete set of effectively
(algorithmically) computable topological invariants, i.e., those geometric objects
that have sufficiently many algorithmically computable invariants to completely
determine their isomorphism classes in an appropriate topological category.

5.2. Elements of computational differential topology. One unmistak-
able sign of a mature mathematical or scientific subdiscipline is the establishment
and general acceptance of well defined mathematical categories that characterize
and circumscribe the field. Such categories have yet to be universally embraced
in the computational topology community, so we shall first describe the categories
in which we shall work in order to frame the problems to be posed in this paper.
This Subsection has its own Subsections 5.2.1 discussing the categorical struc-
tures needed; 5.2.2 raising the issue of shape equivalence within these categories
and 5.2.3 emphasizing the interplay between topology and algorithms.

5.2.1. Categories. The sets of interest in computational topology are geomet-
ric objects in an Euclidean space, usually having certain differentiability properties,
but they need not and should not be restricted to manifolds. Examples such as
the locus of x2 + y2 − z2 = 0 in R3 and geometric objects with self-intersections
show that we need to include varieties. One approach to describing the objects
in an appropriate category is to introduce special varieties (s-varieties) having the
property that there are at most finitely many local regular (topological manifold)
branches at each of the singular points [26, 27]. However, a more efficient way to
describe the objects in the computational topology categories is to employ Whit-
ney regular stratifications [19, 27, 28, 41, 84, 123, 168, 178]. First we fix an
Euclidean space RN to serve as the ambient space for the geometric objects and
an order of differentiability k (0 ≤ k ≤ ∞).

Definition 5.1. For a given Euclidean space RN and order of differentiability
0 ≤ k ≤ ∞, a computational differential topology object, denoted as cdtk

N , is a
subset V of RN that can be represented in the form

(5.1) V = M1 ∪M2 ∪ · · · ∪Ms,

where the collection S := {Mi : 1 ≤ i ≤ s} is a Whitney regular stratification of V .
This stratification is comprised of a finite disjoint set of strata Mi, which are open
or closed Ck submanifolds of RN , called the strata of the stratification, and the
strata have dimensions that can range from 0 (points) to N (open solid regions).

The dimension of V in cdtk
N is defined as dimV := max{dimMi : Mi ∈ S}.

Note that a cone is in cdt∞3 , as is a closed cube. Since we shall be concentrating
in this paper mainly on geometric objects that have some differential structure,
most of our attention shall be directed to cases where k ≥ 1.
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We now have suitable objects for our categories, so it naturally remains to
define the appropriate morphisms. It is clear that the more usual choice lead-
ing to homeomorphic or diffeomorphic equivalence will simply not do. For ex-
ample, a circle S1 and a smooth trefoil T knot embedded in R3 are obviously
C∞-diffeomorphic, 1-dimensional submanifolds, but can certainly not be viewed
as equivalent in any reasonable computational topology sense since they are not
equivalent as embeddings in the ambient space R3. In particular, the knot group
for the circle is π

(
R3 \ S1

)
= Z, while the knot group for the trefoil knot π

(
R3 \ T

)

is the group with two generators α and β and one relation, αβα = βαβ, where
π(X) denotes the fundamental group of a topological space X. Therefore, mor-
phisms must be equivalent in some sense as embeddings in the ambient space, as
well as having certain differentiability properties. The next definition attends to
these requirements.

Definition 5.2. A morphism between two objects V and W in cdtk
N is an embed-

ding (in the topological sense) Φ: RN → RN satisfying the following properties:

(i) Φ (V ) ⊆W .
(ii) The restriction Φ|V of Φ to V is of class Ck.

With this we have the last piece necessary for the definition of our computa-
tional topology categories for objects embedded in an Euclidean space RN :

Definition 5.3. For a given Euclidean space RN and order of differentiability
0 ≤ k ≤ ∞, the computational differential topology category, denoted as CDTk

N ,

is comprised of all the objects in cdtk
N as in Definition 5.1, and the morphisms as

in Definition 5.2, with the usual composition of morphisms.

Observe that according to this definition, two objects V and W in CDTk
N are

isomorphic, denoted as V ≈k
N W , iff there is a homeomorphism Φ: RN → RN

such that Φ (V ) = W , and the restrictions of Φ to V and its inverse Φ−1 to W
are both of class Ck. We remark that in most cases when the ambient space and
differentiability class are fixed, we simplify the above notation by omitting the
subscript and superscript in the isomorphism notation, so that we shall simply
write V ≈ W . In the sequel we shall, for convenience, indulge in the harmless
abuse of notation of referring to both objects and morphisms as being members
of the category CDTk

N rather than distinguishing between the set of objects and
set of morphisms comprising this category.

Isomorphism in the categories CDTk
N (which is sometimes referred to as em-

bedding equivalence [149]) is obviously more restrictive than homeomorphic equiv-
alence in the standard topological category TOP. More specifically, in addition to
the usual homeomorphism type invariants such as homotopy, cohomotopy, homol-
ogy, and cohomology that one needs to consider for equivalence in TOP, one needs
also to verify the invariance of additional quantities such as linking numbers to
verify equivalence in the computational differential topology categories. For future
reference, we denote isomorphism in the TOP category as

(5.2) V
h≈W.
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Topological equivalence by isotopy [13, 14, 16, 23, 139, 151] is stronger than
the isomorphic equivalence given in Equation 5.2, as has already been introduced in
Definition 4.1. We remark here that for the case of smooth knotted and unknotted
circles in R3, standard knot equivalence, ambient isotopy, and isomorphism in
CDT0

3 are all equivalent to one another [91, 92, 122].
One of the basic goals in computational topology is to create computer gener-

ated procedures for obtaining representations of objects having the same shape—at
least in some acceptable approximate sense—as a given geometric object. This
obviously begs the question of what is meant by shape, a question that we address
in the next subsection.

5.2.2. Shape of geometric objects. What does it mean to say that two objects,
V and W in CDTk

N have the same shape? Naturally, to have the same shape, V
and W ought to at least be isomorphic in the computational topology category,
but intuition certainly requires more. A suitable definition is the following:

Definition 5.4. The objects V and W in CDTk
N have the same shape if there

exists an isomorphism ϕ : V → W that is a scaled Ck-isometry in the following
sense: There exists a constant c > 0 such that c−1ϕ is an isometry. More par-
ticularly, recall that for ϕ to be an isomorphism in CDTk

N it must be extendable
to a homeomorphism Φ: RN → RN . Accordingly the definition requires that the
restriction of Φ to V (which is ϕ) must be a Ck map such there exist a c > 0 and
an isometric Ck-embedding ψ : V → RN (in the metric induced on V by the Eu-
clidean metric on RN ) with Φ(x) = cψ(x) for all x ∈ V . We denote this property
of having the same shape by V ≡k

N W , and omit the subscript and superscript for
simplicity whenever the context is clear.

Computational representations of geometric objects—no matter what type of
format is used to describe the rendered object—usually involve some approxima-
tion error, which necessitates the use of the following definition, or something of
the same sort, for computational topology applications.

Definition 5.5. Given ε > 0, we say that V and W in CDTk
N have the same shape

(mod ε) if they are isomorphic in this category via ϕ : V → W , and there are a
positive number c and an isometric Ck-embedding ψ : V → RN such that ϕ is ε-
close to cψ in the Whitney Ck-topology, which essentially means that derivatives
of all orders less than or equal to k of ϕ and cψ differ by less than ε (in the
appropriate operator norm) over all of V [19, 84, 134]. Having the same shape
(mod ε) is denoted as V ≡k

N W (mod ε), where as usual we shall suppress the
subscript and superscript when the context is clear.

We now are in possession of all the notation that we need to formulate the
efficient approximation problem of computational differential topology, which we
attend to in the succeeding subsection.

5.2.3. The efficient approximation problem. With the notation, it is simple
to explain—at least in general terms—the nature of the essential problem con-
fronting computational topologists. It begins with a given prototype object V0 in
CDTk

N , which must be represented by computer generated means that are based
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upon an algorithm A. The word ‘given’ here is somewhat of a misnomer that
requires very broad interpretation: The prototype object may be defined exactly
in terms of equations, or it may be a completely developed model of a geometric
object, or represented by data sampled from an existing physical object such as
a statue or building, or—in the worst case scenario—may be only partially and
imprecisely known simply in terms of representative data, such as point-clouds,
sampled according to some scheme [161].

An algorithm for representing and analyzing a geometric object with computa-
tional topology constraints should include an algorithmic subroutine for verifying
that the computed object has the same isomorphism type as the given object—
assuming that this much is known about the object to be represented. If we
have only incomplete topological knowledge of the prototype object, an algorithm
designed to produce computer generated representations, say at various levels of
accuracy, should at least be capable of verifying that the isomorphism type re-
mains constant as the accuracy is refined. When such an algorithm is available,
such a constant ‘limit’ may serve as a good educated guess of the actual isomor-
phism type of the partially known prototype object. The following notion is useful
in the investigation of such questions.

Definition 5.6. Let V0 be a given object in CDTk
N and let V be another such

object. Then the isomorphism type of V is said to be V0-decidable if there exist an
algorithm A to determine if V ≈ V0. Such an algorithm is called a (V0, V )-decider.

This brings us to the overarching focal point of any complete investigation
of a problem in computational differential topology, which addresses both the
mathematical and computer science aspects involved.

Efficient Approximation for Computational Differential Topology. Given
a prototype object V0 in the category CDTk

N , construct an algorithm A to be used

for obtaining a computer generated representation V (in CDTk
N ) of V0, which

has the following properties: (a) For each sufficiently small positive ε, the algo-
rithm generates a representation V (ε) of V0 and includes a subalgorithm that is a
(V0, V (ε))-decider; (b) V (ε) ≡ V0 (mod ε) for all such ε; and (c) the algorithm is
optimally efficient to the degree that the computational complexity of A, denoted
as CC (A), is minimal in some reasonable sense.

It should be noted that, although not specifically included in the above defi-
nition of the efficient approximation problem, ease of implementation with regard
to producing user-friendly software based on the algorithm is also an important
consideration, especially when it comes to applications.

In general, a complete solution of the efficient approximation problem as stated
may be extremely difficult—or even impossible—to achieve, so simplified versions
of this problem, such as those we describe in the sequel, are highly desirable and
often vigorously pursued. We note that if this efficient approximation problem
is viewed from a computational geometry rather than a computational topology
viewpoint, one should choose the differentiability class k to be greater or equal to
two, so that the representations produced are acceptable in terms of differential
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geometry where second derivatives manifested in curvature tensors (or differential
forms) are essential elements in determining good approximations.

5.3. The identification and classification problem. The reader is sure
to have observed that the efficient approximation problem as presented in the pre-
ceding sections is somewhat lacking in rigor. Moreover, as Edelsbrunner pointed
out when the version above was unveiled recently, it also is deficient in scope—
especially as regards the wide range of possibilities in knowledge of the prototype
object, means of obtaining data from the object for the algorithm, and meth-
ods available for rendering the computational representations. These observations
constitute the core of the first few open problems that we pose here.

5.3.1. Formulation of the identification and classification problem. In order to
pose this identification and classification problem with more precision, and to in-
troduce sufficient rigor into supporting definitions and concepts so as to articulate
which problems remain open, we shall first present a more detailed version than
outlined in the preceding section. To begin, we develop more precise notation
concerning the computational procedures embodied in the algorithm A devised
to produce an approximate representation V (ε) of the prototype geometric object

V0 in CDTk
N for a given error bound ε. We emphasize here that the error bound

is on the geometry, not the topology, as invariance of the isomorphism type is
an essential requirement for the algorithm. The input data from V0, which we
denote as D (V0), may assume any one of several possible forms such as the vertex
points and connection relations for the elements of a triangulation of the prototype
object, a global functional representation or a set of local functional expressions
arising from exact mathematical models, or an approximate nonuniform rational
B-spline (NURBS) decomposition of V0, or points forming a point-cloud sampled
in a manner designed to provide a good approximation of the given object, which
is often the case when V0 is not completely known or specified.

One can already see here that there is a problem in formulating an adequate
characterization of the space D in which the data obtained from the prototype
object resides. A good definition of this data space is required so that we can
consider D as a function from (the object set of) CDTk

N to D, which can be

expressed as D : CDTk
N → D. Of course, the tolerance (geometric accuracy) ε must

also be counted as an argument of the algorithm. With the notation developed,
we may now view the algorithm as a recursive map of the form

A : D(CDTk
N )× R+ → CDTk

N (D(V0), ε) 7−→ V (ε)

where R+ is the set of positive real numbers, and V (ε) is a graphical rendering of a
(geometric) approximation of V0, or more precisely, an algorithm for producing a
computer generated approximate representation of the prototype object. We now
have a more rigorous foundation for describing the identification and classification
problem.

The Identification and Classification Problem in CDTk
N . Devise an algo-

rithm A = A (D(V0), ε) that
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(i) is defined for all sufficiently small positive ε,

(ii) is defined for a suitably ample domain of prototype objects V0 in CDTk
N ,

(iii) produces an output V (ε) ≡k
N V0 (mod ε) for all ε for which it is defined,

(iv) has minimal computational complexity CC (A) in some sense.

The above description of the identification and classification problem, al-
though more precise than that which was presented in preceding section, is clearly
still beset with deficiencies in several respects, two of which are embodied in the
following posed problems.

Question 5.1. Modify the description of the Identification and Classification
Problem in CDTk

N so that it more rigorously and completely encompasses the wide
range of methods that can be used, and is better able to express the degree to which
the prototype object is known.

Question 5.2. Find a way of better expressing the type of representation approach
that is used to produce the output object V (ε) in the statement of the identification

and classification problem in CDTk
N .

Note that in a case where the isomorphism class of the prototype object V0 in
CDTk

N is mostly or partially unknown, it will be necessary to revise the requirement
(iii) to something like

(iii)′ The outputs V (ε1) and V (ε2) with 0 < ε1, ε2 < ε satisfy V (ε1) ≡k
N V (ε2)

(mod ε) for all sufficiently small ε.

This suggests a possible notion of persistence of isomorphism type analogous to
the basic ideas used to formulate persistent homology [68, 72, 184, 185].

Question 5.3. Reformulate and expand (iii) in the Identification and Classifi-

cation Problem in CDTk
N to include those cases where one only has incomplete

knowledge of the isomorphism type of the prototype object—perhaps along the lines
of persistence of isomorphism type for sufficiently small tolerances.

Another inadequacy of our exposition of the identification and classification
problem is manifested in the imprecision of the minimality statement for compu-
tational efficiency, which naturally leads to the following question.

Question 5.4. Revise the definition of the Identification and Classification Prob-
lem in CDTk

N so that it includes a more precise description of the computational
cost that is consistent with the most important computational concerns arising in
a broad spectrum of applications of computational topology.

Resolving this minimality definition problem is bound to be quite challenging,
partly owing to the extensive array of minimality criteria available for applications,
but more likely to stem from the difficulty of actually proving minimality for an
algorithm in most reasonable, nontrivial senses. As algorithms developed to render
approximations of geometric objects possessing only a fair degree of complexity
tend to be decidedly nontrivial, verifying minimality of computational complexity
tends to be rather daunting.
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In addition to the properties of the algorithm A delineated in the identification
and classification problem, it is desirable for it to continue to generate represen-
tations satisfying property (iii) or (iii)′ when the data D(V0) and tolerance ε vary
slightly in an appropriate sense. When the algorithm has this additional feature,
it is natural to say that it is stable, and this leads to another problem.

Question 5.5. Devise a rigorous definition of stability of computational topology
algorithms, and develop methods for determining whether or not such an algorithm
is stable.

It should be clear to anyone with experience in solving problems in compu-
tational topology that it might help to ameliorate the inherent ambiguity of the
identification and classification problem if some of the techniques for determin-
ing isomorphism type (at least approximately) were included in the above de-
scription. Most of the methods currently employed to analyze isomorphism type
involve the algorithmic computation, where feasible, of isomorphism invariants
such as characteristic classes, homology groups, and cohomology rings, along with
approaches based upon tubular type neighborhoods, Morse theory, Morse–Floer
theory, singularity/stratification theory, and obstruction theory [1, 3, 100, 120,
126, 133, 137, 140, 151, 158, 184, 185]. However, there also is a fairly re-
cent spate of articles employing innovative methods from general topology, such
as [73, 81, 83, 93, 105, 107, 112, 121], that appear to be applicable to the
(complete or partial) computation of isomorphism type as well.

5.3.2. Simplification of the identification and classification problem. Owing
to the impressive advances in the realm of computational geometry over the last
several decades leading to the creation of several algorithms for generating very
(geometrically) accurate representations of geometric objects, and the development
of new tubular neighborhood based theorems, it now appears possible to recast
the identification and classification problem in the following far more tractable
simplified form.

Simplified Identification and Classification Problem. Devise an algorithm
A = A (D(V0), ε) that

(i) is defined for all sufficiently small positive ε,

(ii) is defined for a suitably ample domain of prototype objects V0 in CDTk
N ,

(iii) produces an output V (ε) that is ε-close to and has the same homeomor-
phism type as V0 for all ε for which it is defined,

(iv) has minimal computational complexity CC (A) in some sense.

The basis for the above simplification is what has been called the self-inter-
section precedes knotting principle (SIPKP), which can be explained in the fol-

lowing way for compact objects V in CDTk
N . Owing to the compactness, all of

the strata in the regular stratification (Equation 5.1) of V0 have compact clo-
sure. Each closed stratum has an arbitrarily thin, relatively compact tubular
neighborhood, and the open strata also can be shown to have arbitrarily thin,
relatively compact tubular-like neighborhoods. A tubular-like neighborhood for
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an open stratum has the form of a standard tubular neighborhood joined to open
neighborhoods of the ends of the manifold, very much like the construction for
manifolds-with-boundary employing boundary collars in [4, 5]. Taking the union
of these tubular and tubular-like neighborhoods for all the strata, we have an
arbitrarily thin tubular-like neighborhood U . Then we can use an existing com-
putational geometry algorithm to generate an approximation V (ε) contained in U .
When the distance between images of a homeomorphism differ by no more than ε,
some sufficient conditions are known to extend these homeomorphisms to ambient
isotopies [103]. This known proof avoids the self-intersections mentioned, leading
to the following open problem as to how far this technique can be extended.

Question 5.6. Prove the SIPKP, or provide a counterexample. 1117?

It goes almost without saying that there are obvious versions of Problems 5.1–
5.6 for the simplified identification and classification problem, and these too are
open problems of fundamental importance in computational topology.

5.4. Decidability of isomorphism type. The discussion of the identifica-
tion and classification problem and a simplified version of it in the previous section
raises the question of just what types of objects in CDTk

N are amenable to algo-
rithmic determination of their isomorphism types. We shall focus on this question
in this section (assuming some familiarity with the basics of differential topology
and such related fields as singularity and stratification theory as can be found
in [19, 27, 52, 59, 84, 90, 94, 122, 123, 125, 134, 149, 163, 168, 174, 178]),
and will find it convenient to employ the following definition.

Definition 5.7. Let C be an arbitrary category, and suppose that X is an object
in this category. If there is an algorithm for determining the isomorphism class of
X, we say that X is C-decidable.

Bearing this in mind, we shall concentrate on identifying the properties that
render a geometric object (embedded in an Euclidean space) decidable in the rel-
evant categories for computational differential topology. To establish the overall
theme of this section, we shall first summarize everything in one overarching prob-
lem, and then proceed to break this up into more manageable pieces. This unifying
problem may be phrased in the following manner.

Unifying Topological Decidability Problem. Determine all compact objects
in CDTk

N that are

(a) TOP-decidable,

(b) CDTk
N -decidable,

and determine the algorithm of minimum computational complexity capable of de-
ciding the isomorphism type in each case.

We shall begin with compact submanifolds and submanifolds-with-boundary
in CDTk

N , with 1 ≤ k, as they are typically easier to classify in terms of the

categories of interest here, namely CDTk
N and TOP.



516 §49. Blackmore and Peters, Computational topology

5.4.1. Decidability of compact submanifolds. In our discussion, we shall pro-
ceed in the order of increasing dimension N of the ambient Euclidean space. If
N = 1, any compact submanifold, denoted as M , is closed (because by definition
it has an empty boundary, i.e., ∂M = ∅). Hence, M is particularly simple, a finite
set of points in the zero-dimensional case. There are no closed compact subman-
ifolds of R1 of dimension one (or equivalently, of codimension zero, which is the
dimension of the ambient space minus the dimension of submanifold). Even if we
drop the compactness assumption, decidability is a simple matter owing to the fact
that every connected, open, C1 submanifold of R1 of codimension zero is an open
interval. The compact submanifolds-with-boundary of R1 are also easy to clas-
sify algorithmically in CDTk

N , for they must be one-dimensional and comprised of
finitely many disjoint closed intervals. We note from these simple examples that
we may assume that the submanifolds are connected, for if not, we can simply
analyze the components one-by-one.

In R2, the situation is also essentially trivial, with the decidability of the
homeomorphism type or isomorphism type in CDTk

N being a simple matter indeed.
For example, it follows from the Jordan curve theorem and other basic principles,
that every connected, closed submanifold M of codimension-1 must be equivalent
to the circle S1 in either the category TOP or CDTk

N . Moreover this can be
determined by a single effectively computable invariant, which is the condition
H1(M,Z) = Z for the first integral homology group, or equivalently described in
terms of the Euler–Poincaré characteristic as

χ (M) = σ0 − σ1 = rankH0 (M,Z)− rankH1 (M,Z) = 0,

where σj stands for the number of j-dimensional simplices in a triangulation,
and the rank is defined in the usual way [122, 135, 163, 184]. Note also that
if we choose an algorithm A based on computation of χ, we readily find that
CC (A) = O (ns), where ns is the number of top (=1)-dimensional simplices in a
triangulation of M , and one cannot do much better than this with respect to com-
putational efficiency. As a matter of fact, it follows readily that both the complete
and simplified identification and classification problems are completely solved for
compact submanifolds of R2, including the establishment of computational mini-
mality for the algorithm assuming that the prototype submanifold is completely
simplicially defined in terms of triangulations.

These simple results already provide an indication of the usefulness of algebraic
topology in dealing with the decidability problem. In this vein, we include the
following result for future reference. It can be proved using the stratification
(Equation 5.1), the C1 triangulation theorems of Munkres [134], and some basic
results on the effective (algorithmic) computability of homology and cohomology
for finite simplicial complexes (see [100, 135, 184]).

Theorem 5.1. Let V be a compact object in CDTk
N (k ≥ 1). Then V has a finite

C1 triangulation, and the homology H∗ (V, F ), cohomology H∗ (V, F ), and all of
the applicable characteristic classes such as the Chern, Euler, Stiefel–Whitney, and
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Pontryagin classes (possibly just for the strata) for V are effectively computable,
where the coefficient ring F is the integers Z or the integers mod 2.

It is in R3 that both the isomorphism classification and the decidability prob-
lem first assume nontrivial proportions.

Compact manifolds in Euclidean 3-space: Let M be a compact, connected
submanifold (possibly with boundary) in CDTk

N with k ≥ 1. When dimM = 0,

both the classification and decidability problem are trivial in both TOP and CDTk
N .

For dimM = 1, things begin to get very interesting and rather difficult. If M is
closed, it must be diffeomorphic to a circle, but it can be embedded in R3 as a very
complicated knot. Decidability in TOP is virtually the same as in the 2-space case
described above, so the homeomorphism type can be algorithmically determined
in linear time. In CDTk

N , the isomorphism classes correspond to knot types. It

follows from [91, 92] that M is CDTk
N -decidable, but may be NP-complete. This

contrast is a very effective demonstration of how much more difficult it can be
to solve the complete identification and classification problem than the simplified
identification and classification problem.

An embedded closed surface M , must be orientable, and an easy solution
of the decidability problem follows directly from the simple and elegant classical
result [122, 163] that the homeomorphism and diffeomorphism types of such a
submanifold are completely determined by the Euler–Poincaré characteristic

χ (M) = σ0 − σ1 + σ2 = rankH0 (M,Z)− rankH1 (M,Z) + rankH2 (M,Z) .

Accordingly the problem for TOP-decidability is solvable in linear time. Again,
there is a huge difference in the degree of difficulty of the TOP- and CDTk

N -
decidability problems, as one can see by considering the thin toral surface of a
smoothly thickened knotted curve. Once again, M is CDTk

N -decidable—although
there seems to be no proof of this in the literature—but the computational com-
plexity of any associated algorithm appears to be very high, and may be NP-
complete.

The homeomorphism or diffeomorphism types of a compact submanifold-with-
boundary M of codimension-2 in R3—which may be nonorientable as in the case
of a Möbius strip—is completely determined by χ (M), the orientability, and the
number of boundary components [122]. Therefore, M is TOP-decidable in lin-

ear time. On the other hand, if M is CDTk
3-decidable, then the computational

complexity of the problem is bound to be of the order of knot decidability, but
otherwise appears to be unknown.

Question 5.7. Prove5 that every compact, connected, C1-submanifold of R3 of 1118?

dimension less than or equal to 2 is CDTk
3-decidable and obtain estimates for the

computational complexity of any relevant algorithms that can be used to determine
isomorphism type.

A compact, connected, 3-dimensional, C1-submanifold M of R3 must have a
nonempty boundary ∂M . It is easy to see that if ∂M is connected, it completely

5All problems of providing a proof include implicitly the option of finding a counterexample.
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determines M ; hence, M is decidable in both TOP and CDTk
3 . An analog of this

ought to be true in the case when ∂M is not connected, but this still appears to
be an open problem.

Question 5.8. Prove that every compact, connected, C1-submanifold of R3 of1119?

dimension 3 is both TOP- and CDTk
3-decidable (or provide a counterexample), and

obtain estimates for the computational complexity of any relevant algorithms that
can be used to determine isomorphism type in these categories.

Compact manifolds in Euclidean 4-space: Of course there is a far more diverse
and interesting range of compact submanifolds of R4 than R3, but we shall confine
our attention to just a select few of the possible types of C1-submanifolds of
dimension two or higher. Moreover, in this and the higher dimensional cases in
the sequel, we shall concentrate mainly on TOP-decidability, which is associated
with the simplified identification and classification problem. We observe that all
closed surfaces, or compact surfaces-with-boundary, including the nonorientable
ones such the Klein bottle and the projective plane, can be embedded in R4.

We showed above how the decidability problem for oriented compact surfaces
can be easily and very efficiently solved. This is also true for the nonorientable
surfaces, all of which can be realized as two-dimensional, closed submanifolds and
compact submanifolds-with-boundary of R4. For these cases the TOP and CDTk

4

isomorphism types also are completely determined by the orientability, or lack
thereof, the Euler–Poincaré characteristic, and the number of boundary compo-
nents. Moreover, the isomorphism type can be computed in linear time.

To summarize compact surfaces with regard to the decidability problem: they
represent the lowest dimensional nontrivial submanifolds for which the problem
becomes interesting, yet is easily solvable by simple classical means expressed,
modulo orientability and possible boundary components, in terms of a single in-
variant that is computable in linear time. As such, they are excellent illustrative
examples of some of the simplest solutions that provide direction for more general
cases.

The 3-sphere S3 is the simplest closed, connected, three-dimensional, sub-
manifold of R4. It has been much in the mathematical news of late owing to
the excitement created by the work of Perelman [98] on the famous and long-
standing Poincaré Conjecture, which states that a connected, simply-connected
(i.e., π(M) = 0) three-dimensional manifold M having the homology of a 3-sphere
must, in fact, be homeomorphic with S3 [132]. Perelman’s work, which relies
heavily upon Hamilton’s Ricci flow methods, is still being studied by the experts,
and at last look, the jury was still out. The recent paper by Cao and Zhu [35]
sheds new light on this question. However, the opinions expressed so far are quite
positive, and it looks very much like Perelman has finally affirmatively settled
this amazingly difficult and influential conjecture. In the context of decidability
questions, Perelman’s work promises to have many important applications.

If Perelman is correct, this leads naturally to a very straightforward effec-
tive procedure for determining if a closed, three-dimensional, C1-manifold M is
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a 3-sphere: First show that the fundamental group is trivial, which can be ac-
complished algorithmically by computing the edge-path group of a triangulation
of M [163]. Using the same triangulation, it follows from Theorem 5.1 that the
integral homology of M is effectively computable. Then if one computes that
H0 (M,Z) = H3 (M,Z) = Z, and H1 (M,Z) = H2 (M,Z) = 0, it follows that M is
diffeomorphic, and a fortiori homeomorphic with S3.

However, there already is an effective procedure, the Rubinstein–Thompson al-
gorithm [169], for deciding within exponential time if a manifold is homeomorphic
with S3. This, of course, begs the question embodied in our next problem.

Question 5.9. Develop an efficient algorithm based on the computation of the 1120?

edge-path group and the integral homology as described above for deciding whether
a closed manifold is homeomorphic with S3. Then compare the computational
complexity of this new algorithm with that of the Rubinstein–Thompson algorithm.

Actually, Perelman’s results claim to prove Thurston’s Elliptization Conjec-
ture for 3-manifolds (from which the Poincaré Conjecture follows immediately),
which implies that all closed, connected, simply-connected, three-dimensional man-
ifolds can be classified up to homeomorphism type. It appears that the elements of
this classification theorem can be computed algorithmically, although this promises
to be a daunting task owing to the techniques employed, not least of which are
those generated by Hamilton’s Ricci flow approach.

Question 5.10. Within R4, prove that every closed, connected, simply-connected, 1121?

three-dimensional C1-submanifold is TOP-decidable and find estimates for the
computational complexity of any relevant algorithms for deciding the homeomor-
phism types.

Compact submanifolds of higher-dimensional Euclidean spaces: It follows from
the Whitney Embedding Theorem [149] that every closed, four-dimensional C1-
manifold M can be embedded in RN with N ≥ 9. Four-manifolds provide some
of the most intriguing and elegant TOP-decidable examples available, and they
also yield important insights into the limitations of topological decidability. It
follows from the work of Freedman, Donaldson, and others (as in [56, 79]) that
all closed, simply-connected, orientable, four-dimensional, C1-manifolds M can be
classified up to homeomorphism type. As a corollary, one obtains a proof of the
Generalized Poincaré Conjecture for 4-spheres; namely, every simply-connected,
homology 4-sphere is homeomorphic with the 4-sphere S4.

One of the most beautiful aspects of this classification theory is the particularly
simple criteria for determining the homeomorphism type, which comes out of the
following observations. Elementary algebraic topology, Poincaré duality and the
universal coefficient theorem for homology imply that H0 (M,Z) = H4 (M,Z) =
Z, H1 (M,Z) = H3 (M,Z) = 0, and H2 (M,Z) is a free abelian group. This
leads one to at least predict the important role in classification of 4-manifolds
played by the bilinear, unimodular intersection form ω : H2 (M,Z)×H2 (M,Z)→
Z. The classification theorem essentially states that the closed, oriented, simply-
connected, differentiable four-dimensional manifolds are completely classified by
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their intersection forms. Consequently, we readily infer from Theorem 5.1 that
these manifolds are also TOP-decidable. However, this result has, as far as we
know, not appeared in the literature.

Question 5.11. Within Euclidean space RN , prove that all closed, orientable,1122?

simply-connected, four-dimensional C1-submanifolds are TOP-decidable and esti-
mate the computational complexity of the classifying algorithms.

So 4-manifolds can lead to what may be considered to be among the best of
times when it comes to topological decidability, but they also show us the worst of
times—undecidability. It can be shown using simple manifold surgery techniques
that every finitely presented group G (possibly very far removed from the trivial
group) can be realized as the fundamental group of a closed, four-dimensional C∞-
manifold. Using this fact, and certain undecidability results for the isomorphism
problem for groups, Markov proved that there exist certain 4-manifolds that are
not TOP-decidable [122, 163]. There are limits to the topological decidability
of manifolds after all, and one need not look higher than four dimensions to find
them. Naturally, this leads to several open problems that we leave to the reader
to pose.

As higher dimensions provide more room for the techniques of differential
topology to perform their mathematical magic, it is not surprising that the Gener-
alized Poincaré Conjecture and the classification of closed, simply-connected, dif-
ferentiable manifolds were proven by Smale [162], Stallings [164], Zeeman [182],
and others more than a decade before Freedman’s remarkable work. The earlier
breakthroughs of Smale, Stallings and Zeeman employed a variety of differential
topological techniques such as Morse theory, cobordism theory, and obstruction
theory, all of which appear to be accessible to algorithmic formulations for mani-
folds in CDTk

N and so we leave this subsection by posing the following (formidable)
open problem.

Question 5.12. Prove that every closed, simply-connected, n-dimensional mani-1123?

fold in CDTk
N , where k ≥ 1 and n ≥ 5, is TOP-decidable and estimate the compu-

tational complexity of any relevant classifying algorithms. In particular, consider
the case of simply-connected, homology n-spheres.

5.4.2. Decidability of compact nonmanifolds. Each of the decidability prob-
lems delineated for compact submanifolds in CDTk

N have analogs—which are even
more challenging—for compact varieties V that are not submanifolds. Taking our
cue from the triviality of the decidability problems for manifolds embedded in
Euclidean spaces of dimensions less than or equal to three, and expecting Thom–
Mather theory (see [19, 26, 27, 84, 123, 168, 178] to reduce much of the work
to submanifold strata in Equation 5.1 for which our previous observations provide
much insight into decidability, we pose the following.

Question 5.13. Prove that every connected, compact subvariety V in CDTk
N with1124?

k ≥ 1 is TOP-decidable. Find tight upper bounds for the computational complexity
of the resulting algorithms.
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Figure 11. Manifold and projected sweep-like variety

It may be possible to show that the result in this theorem can be obtained in all
higher dimensions as well, but clearly this would require some further restrictions
on the homotopy type. Simple-connectedness might work, but this would severely
restrict the types of nonmanifolds and many of the excluded ones would be apt
to arise in a variety of applications. For, example, consider a thickened figure
eight curve embedded in an Euclidean space of dimension four or higher. Another
direction that one can pursue is to consider nonmanifolds obtained in a simple
fashion from a compact manifold that is TOP-decidable. It is precisely this tack
that we briefly follow in the remainder of this section, focusing upon compact sets
that can be defined in terms of sweep-like operations.

Based upon extensive research on swept volumes [1–3, 24, 25, 27, 28, 175],
we are motivated make the following definition of a class of varieties that may
yield to algorithmic classification.

Definition 5.8. A compact subvariety V of RN is a sweep-like subvariety if there
exists a compact submanifold M of RN+1 = RN ×R such that Π (M) = V , where
Π is the standard projection of RN × R onto RN = RN × 0, in which case V is
said to be the projection of M .

A sweep-like variety is illustrated in Figure 11. Referring to this figure, we see
that the self-intersection cell in the projection of the manifold has the appearance
of an obstruction to lifting the variety to its regular preimage manifold of which it
is the projection. This suggests that we can use a triangulation of the variety to
identify this cell, in the manner of obstruction theory [174], in an algorithmic way.
Thus, if the projecting manifold itself is topologically decidable, it appears that
the same should be true of its image, which suggests that the following problem
is solvable.
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Question 5.14. Prove that every connected, compact, sweep-like subvariety V of1125?

RN that is the projection of a compact, TOP-decidable, C1-submanifold M of RN+1

is also TOP-decidable Find tight upper bounds for the computational complexity of
any resulting algorithms.

6. Computational topology resolution

A common practical concern is the development of algorithms that can pro-
duce appropriate topological representations upon models whose boundaries are
formed by geometric intersections [159]. This is often known as ‘topology resolu-
tion’ and it affords many opportunities for additional research. The circumstances
motivating this role for topological resolution have already been discussed in Sec-
tion 3, particularly in Subsections 3.1 and 3.2.2.

One recent approach to managing the ill-formation of regular sets in compu-
tation [146, 147] utilizes tubular neighborhoods [94], but presents a very broad
definition of a family of sets, each based upon an initial set. An overview is that
each incomplete boundary is used to develop a new family of candidate sets by
building offsets of each boundary element. New Boolean operations are then de-
fined upon this family of sets. One of the authors conjectures that there is a
relationship to the Čech topology.

This work provides a point-set topological characterization for a family of sets
such that each member closely approximates the original set according to a pre-
cise criterion, where it is clear that the family has some similarities to sets defined
via interval arithmetic. The methods presented are appealing and will work for
simple cases. However, as the geometry becomes more complex it remains of inter-
est to understand a general approach to formulate these tubular neighborhoods,
along with guarantees upon the properties of the family of sets generated and
operators used within that family. In order to obtain such a family from a specific
instantiated boundary model, it becomes essential to understand which conditions
must be satisfied by the approximants, where an argument is given for homotopy
equivalence [157].

Question 6.1. Is there a characterization of those tubular neighborhoods which1126?

can be used to define useful families of regular closed sets as alternatives to ill-
formed computational representations?

Question 6.2. Does the construction provide some meaningful relation to the1127?

Čech topology?

6.1. Integration with numerical analysis. Another approach relies upon
more classical techniques from numerical analysis, specifically the Whitney Exten-
sion Theorem [177], as captured in a recent doctoral thesis of M. Zidini [183] and
several related preprints [17, 18, 167].

The strategy presented is to take the ill-formed geometry and use the Whitney
Extension Theorem to extrapolate the imperfectly fitting boundary elements until
a satisfactory manifold boundary is created. The emphasis is to build a theoretical
model, not necessarily one that would be instantiated in any specific computational
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c

Figure 12. Gap analysis for Whitney extensions

representation. The intent would be to use this idealized model as a basis for
developing rigorous error bounds as to how far any specific instantiation differed
from this ideal. Some metrics are proposed for those measurements. Any two
surface patches within the object boundary are said to be adjacent if they meet in
a common boundary. Extensions of adjacent patches are proposed to ensure that
they meet in a well-formed shared boundary, as a means to compensate for the
numerical intersector errors previously discussed between surface patches.

The thesis makes the explicit assumption that “non-adjacent perturbed patches
are disjoint.” While this is standard, its use within computation raises the more
subtle issue of the magnitude of the separation between these non-adjacent patches
and the separation between adjacent patches.

Consider a finite set of surface patches whose union forms an object boundary,
where the boundary curves for these surface patches have been created via the
Grandine–Klein intersector [86] with an error preprocessor [133], so that the ‘gaps’
between adjacent surfaces were guaranteed to be no greater than λ in model space.
One would hope that λ was chosen judiciously. Further, let δ denote the minimum
distance between any two non-adjacent pathces. Generally, one would hope that
λ� δ. But, suppose, to the contrary, that λ� δ.

To create a well-formed model from these surfaces, it would be appropriate
to use the proposed Whitney extensions that would have perturbations on the
order of λ, but perturbations of that magnitude could possibly introduce unwanted
intersections between non-adjacent entities, as described below relative to the
example of Figure 12. (Figure 12 uses curves for simplicity of exposition, but it
should be clear that the example could easily be generalized to represent surfaces.6

The curves should join to form a closed loop. This ideal connectivity is indicated
by each arrowhead pointing to the end point of next segment.)

6For instance, each of the curves could serve as the spine of a swept surface having a

generating curve of a circle of fixed radius.
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For Figure 12, curve c lies in a plane perpendicular to the page, considered to
be the plane z = 0. The image shown of c as a vertical line segment is merely its
planar projection into the plane z = 0. The remaining curves shown all lie in the
plane z = 0.

The other salient aspects of Figure 12 are summarized, as follows:

• The minimum distance δ is between c and the horizontal segment. This
value of δ occurs at an interior point of c and at the left end point of the
horizontal segment.

• The ‘gap’ between the left end point of the horizontal segment and its
following free-form curve is the maximal value of λ.

Under these circumstances, the Whitney extensions to join properly the verti-
cal segment and the free-form curve could create unintended intersections with c.
If these gaps were the result of a construction process, such as a Boolean operation
relying upon a numerical surface intersector, then a reasonable response might be
to re-execute the procedures that generated the model, with tighter tolerances
upon the numerical intersector so that one would have λ� δ.

Question 6.3. Is it possible to provide practical criteria for the choice of λ, the1128?

separation distance between non-adjacent patches relative to δ, and the separation
distance between adjacent patches?

Question 6.4. If the errors resulting in these models being ill-formed as regular1129?

closed sets arose from some geometric construction process, such as a Boolean
operation relying upon a numerical surface intersector, is a reasonable response
to re-execute the procedures that generated the model, with tighter tolerances upon
the numerical intersector so that one would have λ� δ?

Question 6.5. Are there implications that geometry should move from represen-1130?

tation by specific instantiations into models that are more descriptive?

Question 6.6. Might appropriate topological abstractions be more helpful than1131?

specific geometric coordinate based information?

A very recent manuscript [157] argues that interpreting the inconsistencies
between the geometric data and its connective information should rely upon a
homotopy equivalence between the represented geometry and the intended exact
set. The homotopy equivalent geometric sets are described as lying within the same
tolerance zone. Additionally, graph theoretic and cell complex techniques are used
to express and understand additional constraints that should be imposed upon
these homotopies. In particular, it is proposed that these tolerance zones must be
contractible for all cells that are homeomorphic to finite-dimensional Euclidean
balls. Some further relationships are proposed to describe these homotopies in
terms of the nerve of a collection of closed sets.

Question 6.7. If homotopy equivalence is considered as a necessary condition for
tolerant representations of geometry, what further conditions result in sufficiency?

Question 6.8. Can a practical algortihm be created to implement this theory
regarding the homotopy equivalence between geometric representation and intent?
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6.2. The role of exact arithmetic. The study of ‘exact arithmetic’ arose
from the computational geometry community [181] in recognition that many geo-
metric predicates were critical to evaluation along boundaries. The question of
being ‘on’ a boundary was equated to resolving whether numeric expressions were
exactly equal to zero. In some cases, this can be done quite nicely. Assuming
that all the input geometry coordinates are expressed exactly as rational numbers,
then it is well known that roots for polynomials can be found within the field
of algebraic numbers. So, one of the important aspects of exact arithmetic is to
augment the typical floating point representation with additional data structures
for radicals over the rationals.

Current language implementations for exact arithmetic have specific predi-
cates for algebraic numbers [142]. So, solutions to x2 − 2 can be represented
exactly by these predicates. Then, these expression can be approximated to any
number of bits specified by the user. Furthermore, algebraic operations are repre-
sented as directed acyclic graphics (DAG), with floating point values at the leaf
nodes and algebraic operations at other nodes. In this sense, they are similar to
CSG trees of Section 3.2.1. Since this DAG is the primary data structure, solutions
can be adapted to user specified precision by just putting better approximations
into the leaf nodes and being careful about error accumulation at the other nodes.
There is a performance penalty for exact arithmetic. Efficient implementations
are available for low-degree polynomial representations.

Question 6.9. Can exact arithmetic be augmented to include non-algebraic nu- 1132?

meric representations?

Question 6.10. What happens when the assumption of exact rational input is not 1133?

met?

The use of exact arithmetic can be contrasted with more classical techniques
from numerical analysis. Specifically, the recent publication [99] presents a role for
backward error analysis, with a reply included from proponents of exact arithmetic.
This leads naturally to the next question.

Question 6.11. What is the role of methods from numerical analysis, specifically 1134?

backward error analysis, when there is uncertainty in the input data?

Question 6.12. Can exact arithmetic have competitive performance with approx-
imate floating point geometric algorithms over high-degree polynomial representa-
tions?

7. Computational topology and surface reconstruction

A significant catalyst for computational topology has been the problem of
constructing an approximating surface mesh given only a sample of points from the
surface. This problem was formalized and brought to the attention of the computer
graphics community in a seminal 1992 paper [97]. Amenta and Bern [9, 10]
described the crust algorithm for which they could show, under some conditions
on the surface and the sample, that the output approximates, geometrically, the
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surface from which the samples were drawn. A later simplification [11] of this
algorithm was shown to produce a PL (triangulated) manifold homeomorphic to
the surface from which the samples were taken, using a somewhat complicated
argument involving covering spaces. These results have been extended to prove
isotopy equivalence, with the following being a representative theorem [13].

Theorem 7.1. Let F be a compact, C2 2-manifold without boundary. Let S be a
set of sample points of F such that for each x ∈ F , there exists a point s ∈ S such
that d(x, s) < k LFS(x), where k = 0.085 and LFS(x) is the minimum distance
between x and the medial axis of F . Then, there is an algorithm that will take S
as input and produce a PL approximation of F that is ambient isotopic to F .

Question 7.1. What are necessary and sufficient conditions on a low-dimensional1135?

manifold to permit an ambient isotopic approximant as the manifold reconstruc-
tion?

Question 7.2. What criteria are necessary and sufficient on the density of the1136?

sampling set on a low-dimensional manifold to permit an ambient isotopic approx-
imant as the manifold reconstruction?

Question 7.3. What is the appropriate topological equivalence relation to consider1137?

for manifold reconstruction?

Question 7.4. Specifically, for manifolds without boundary, what are necessary1138?

and sufficient conditions on the normal field on the boundary to permit an ambient
isotopic approximant as the manifold reconstruction?

Recent work that may be helpful references in considering these questions
include [4, 42, 43, 50, 51, 54, 78, 127, 152], with recent theorems appearing for
the cases with boundary [4].

8. Computational topology and low-dimensional manifolds

Many of the 1-manifolds and 2-manifolds for geometric computing are de-
scribed as spline functions [87, 141]. These splines are typically defined over very
simple domains, such as [0, 1] and [0, 1]2. While low-dimensional manifolds have
their own subdiscipline within topology, it is consistent here to consider these
manifolds in relation to generalized spline functions.

8.1. Background. The basic approach we outline here uses two steps to
construct a function. In the first step, we model the domain of the function as
an abstract manifold (this manifold need not have geometry associated with it).
In the second step we define an embedding or immersion of the domain, e.g., to
produce a surface. This second step is done piecemeal by defining local embedding
or immersion functions on subsets of the domain, then blending the results using
a partition of unity.

More formally, given a manifold M , a method for defining charts αc(M) →
c ⊂ Rn on M , immersion Ec : c → Rm and blend Bc : c → R functions for each
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chart, we can define a function on the entire manifold as follows:

E(p) =

∑
cBc(αc)Ec(αc(p))∑

cBc(αc)
(8.1)

To ensure this equation is valid, we place some constraints on the chart αc and
blend Bc functions. First, the charts must cover the manifold, i.e., they are a
finite atlas. Second, the blend functions are non-zero over c. This ensures that
the denominator is not zero. (Note: There’s nothing that prevents the support of
Bc being smaller than c, but it makes it harder to prove that the denominator is
non-zero.) The Ec functions can be any function of continuity Ck over the region
c (the continuity outside of c does not matter).

The continuity of the above equation is the continuity of its constituent parts.
Therefore, to have a Ck function the αc, Ec, and Bc functions must be at least Ck.
The blend functions must also have their value and first k derivatives go to zero
near the boundary of c. This ensures continuity at the boundaries of each chart.

For surfaces, the manifolds that make sense are planes, spheres, and hyperbolic
disks tiled with 4n-sided polygons (with edge pairs identified). The latter is one
possible domain for n-holed (genus n) surfaces. This domain simplifies to the tiled
plane for a standard (1-holed) torus. The Ec functions are typically polynomials
or spline functions.

For reinforcement learning, the manifold is a combination of all possible ac-
tions and sensor readings, and the Ec function is a number that says how good it
is to take that action with those sensor readings (essentially, a height field).

In animation, the manifold depends on the movement. Suppose a character
is throwing a ball. A manifold that describes this motion (in a simplistic way)
consists of a periodic value (where in the throw they are) and a release point
(x, y, z). The function on the manifold is a set of joint angles for every joint in the
body.

8.2. Problem statement. The problem can be loosely stated as follows.
There exist some number of samples di of what the surface or function should look
like; those samples may contain noise. Additionally, the parameter values pi for
the samples (i.e., where they are on the manifold) may also be known. The goal is
to minimize

∑
i ‖di −E(pi)‖ where the pi are given or they give the closest point

to di on E, minpi
‖di − E(pi)‖.

If the goal is interpolation of the points di then the sum should be zero.
In addition to the above approximation constraints, there is usually some form

of “smoothness” constraint to guide what happens between the sample points.
This can take several forms. One option is to minimize some combination of the
second derivatives, such as the bending energy. A second option is to bound how
much the surface varies from, e.g., a linear approximation to the data points.

A related set of constraints concerns “features” in the data, such as sharp
edges and corners. In this case, it may be desirable for the function E to correctly
model the edge or corner, i.e., to exhibit a discontinuity in differentiability.
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8.3. Solving the problem. There are two stages to solving the problem.
The first is to decide the chart placement (the αc), the second is to fit the individual
functions Ec. Ideally, the Ec functions agree where they overlap, i.e., for all charts
ci overlapping a point p, Eci

(αci
(p)) evaluates to the same thing. In this case, the

shape of the blend function doesn’t matter. In practice, the shape of the blend
function has little effect on the final shape, so we can simply define the same blend
function shape for all charts.

There are two options for solving for the free parameters in the Ec functions.
The first is to fit each Ec locally to an appropriate subset of the data. The second is
to fit all of the Ec simultaneously. The latter is, in general, more computationally
expensive, but has the potential to produce better results.

Some observations:

• The more the charts overlap, i.e., the more non-zero terms in Equa-
tion 8.1, the smoother the result tends to be, but this increases the com-
putational expense. “Smoother” is not a well-defined term here; clearly,
the surface has the same continuity regardless of the overlap. However,
there is an averaging effect that reduces the effect of local variation in
the individual Ec.
• The size of the chart and the corresponding required complexity of the Ec

function are inversely related. As the chart size decreases, the variation
in E that Ec is responsible for decreases. In the limit, with an infinite
number of charts we could use piecewise constant functions for the Ec.
• Given a fixed number of degrees of freedom for Ec the desired local

variation in E also determines the size of the chart. In large, flat areas,
we can use a single chart, but in regions with more variation we need
more charts.

• Features such as sharp edges, can be modeled using a function Ec that
is capable of representing a discontinuity. In this case, all of the other
Ec functions need to be “masked out” or they may unduly influence that
area. However, it may be difficult to use a single chart for a feature that
spans most of the manifold.

The following are important open questions:

Question 8.1. What are the optimum size, shape, and amount of overlap for the1139?

charts? The answer to this question depends both on the data and on the choice
of Ec. Optimum is a measure both of the fit (including a definition of smoothness)
and computational tractability.

Question 8.2. Beyond questions of charts for a known manifold, there is also1140?

the question of figuring out what the underlying manifold is for a given set of
data points. The assumption is that the data points di arise from samples of
a low-dimensional manifold embedded in a high-dimensional space. This is the
field of manifold learning in computer vision; most of the techniques (principal
components analysis, isomap, simple linear embedding) currently work only for
planar manifolds, or largely convex (geometrically) spherical or cylindrical data
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sets. What unifying theory is possible for determining the appropriate underlying
manifold for a given set of data points?

9. Skeletal structures

Many of the previously discussed approaches to surface reconstruction in Sec-
tion 7 use the medial axis, which, under specific hypotheses, can be shown to be
a deformation retract [179]. This is an important concept, but its reliable and
efficient computation poses many theoretical [46–48] and practical [45] challenges.

Between any two points, x, y ∈ R3, let d(x, y) denote the usual Euclidean
distance and for any two sets X,Y ⊂ R3, let d(X,Y ) = inf{d(x, y) : x ∈ X, y ∈ Y }.
Definition 9.1. Let x ∈ Rn and S ⊂ Rn. A point s ∈ S is a nearest point on S
to x if d(x, s) = inf{d(x, t) : t ∈ S}. The medial axis of S, is the closure of the set
of all points that have at least two distinct nearest points on S.

This concept was originally defined for object recognition in the life sciences [29,
30]. One investigation of the mathematical properties of the medial axis and
its associated transform function [44] is restricted to geometry within the plane.
More generally, there has been broad attention to the medial axis in Rn within
the computer science literature, where the topological and differentiable investiga-
tions [160, 179, 180] are directly relevant to surface reconstruction work.

Both classical and contemporary research have emphasized the principle that
many analytic attributes of surfaces can be determined using singularity theory
and stratification theory [1–3, 27, 28, 41, 46–48, 55, 144, 158, 168, 178]. In
particular, singularities can be shown to correspond to possible self-intersections or
non-manifold points and can be organized in Thom–Boardman form [19, 84, 123].
However, computational solutions for the associated nonlinear equations can be
prohibitively expensive using many variants of Newton’s method. Furthermore,
other relevant exponential algorithmic bounds [41] appear to pose daunting com-
putational difficulties. Recent singularity publications do offer promising tech-
niques that could lead to efficient algorithmic preservation of ambient isotopy
type [145, 149, 163, 174], particularly in conjunction with recent findings by
Blackmore [27, 28] of approximate methods. The “skin surfaces” introduced in
the context of biological modeling [58] have been shown to have isotopic approx-
imating meshes [118]. The authors of this last paper note that their algorithms
presume that the geometric input set is fixed, but this raises a question about
about whether a given output would be appropriate for other the input sets.

Question 9.1. Once a mesh is created, does it remain valid for some deformations 1141?

of the input set, if those deformations are suitably constrained?

The cut locus is similar to the medial axis and has been used in computational
explorations of shape [180]. In particular, Wolter proves, for a rich class of surfaces,
that C2 continuity is not required to establish a positive distance between the
surface and its cut locus, with a related corollary showing desirable smoothness
properties of offsets of these surfaces.
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Recognizing both the difficulties of approximating the medial axis and the
sensitivity of the medial axis to small (though possibly inconsequential) changes
in form, there has been recent mathematical work in proposing alternatives to the
medial axis [46–48]. This work seeks the determination of relations between the
skeletal structure proposed and the boundary of the original object, so that small
changes in one will result in small changes in the other, where these alternative
skeletal structures are often more topologically complex than the medial axis. The
first of these publications [46] defines various geometric tools in support of these
skeletal structures, and some of these tools hold promise for computational topol-
ogy research, even as we note the distinction that the primary application of these
skeletal generalizations has been to computer vision [143], as opposed to various
simulation contexts.

The expected theory is likely to have some similarities to the use of the nerve
simplicial complex technique previously invoked by Edelsbrunner and Shah [70].
There also appear to be similarities to the skeletal structures defined in the already
cited papers by Damon and his coauthors [46–48, 143], for their consideration
of robust variants of the medial axis and applications in computer vision. The
envelope may also be regarded as one of the level sets generated by the normal
flow, so there may be opportunities to leverage the extensive classical and contem-
porary literature on level sets. Similarly, the extensive existing literature on the
Minkowski sum, deserves careful study for a variety of applications.

Question 9.2. What are the appropriate skeletal structures and algorithms to1142?

extract critical topological information while reducing the representation?

10. Computational topology and Biology on simplicial complexes

Topology studies global properties of geometric objects, like the number of con-
nected components, tunnels, or cavities. The work on computational topology led
by Edelsbrunner has had many interesting applications to biology [60]. His more
theoretically fundamental work on Delaunay triangulations [57, 59] is integral to
these biological applications. This discussion presents those topics together. The
Delaunay triangulations are typically classified as computational geometry, but
the definition of their basic cells has a strong topological element. The triangula-
tion is formed as a dual of a Voronoi diagram, which lies within a metric space, Z,
having a metric d : Z → R. The Voronoi diagram presumes the existence of a finite
set of points Q = {q0, q1, . . . , qn} from Z. The Voronoi diagram is a collection of
closed neighbhorhoods of the qi, each containing one of the qi. For each qi its
neighborhood is defined as the set of all p ∈ Z such that d(p, qi) < d(p, qj) for all
j 6= i. Another related construct is that of α-shapes [69, 150].

An overview article has appeared [60]. The techniques are based largely on
simplicial complexes, computing invariants such as Euler characteristics, Betti-
numbers and writhing numbers [8]. Additionally, Morse theory is invoked [61] to
develop novel data representations for visualization algorithms. These ideas were
the subject of a New Directions short course at the Institute for Mathematics
and Applications [63]. One outcome was to relate computational Morse theory to
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Forman’s discrete Morse theory. Some of the contributions to the literature along
these themes appear in various venues [7, 20, 34, 52, 53, 58, 61, 62, 64–69, 71,
72]. However, even this list is only partially representative of the broad and deep
impact this research has had within the computational topology community.

Some of the techniques evolve more from algebraic topology methods, which
has become an independently rich area in computational topology under the lead-
ership of Edelsbrunner, as well as that of Carlsson [36]. The latter endeavors have
are also integrated with statistics, forming a very rich subject area, which can only
be mentioned here for the benefit of the interested reader. Two conferences on
Algebraic Topological Methods in Computer Science have been held.

A summarizing question becomes

Question 10.1. What role can discrete Morse theory play for the theoretical basis 1143?

for algorithms in computational topology?

Additional work on simplicial complexes emphasizes recovering topological
invariants of a space from a finite set of noisy samples, parameterized within a high-
dimensional Euclidean space. In order to have robustness versus undersampling
and noise, a multiscale view of the space is created that contains information at
all granularities. A space is constructed incrementally using a geometric criterion,
obtaining a family of spaces. The spaces are not independent, but are related by
inclusion maps that induce maps between the topological attributes in the spaces.
The theory of persistent homology captures these relationships as lifetimes for the
evolving attributes [68]. These lifetimes translate into a measure of importance
for topology. So, persistence is a robust mechanism for recovering topology as it
separates topological noise from features.

The traditional approach is to approximate the space by placing small balls
around the samples and characterizing the combinatorics of the ball set. The
resulting complex is simple but very expensive to compute. Unfortunately, no
effective techniques are known for computing small complexes for points in high-
dimensional spaces.

Question 10.2. Can local methods be used to take advantage of the geometry to 1144?

yield small complexes that would be computationally tractable?

Often, one can generate a multiple-parameter family of spaces that describes
a point set. For example, one might wish to track the topology of isosurfaces
of both pressure and temperature of a jet flow across time. Recent progress in
persistent homology indicates that a simple description is not possible for multiple
parameters [185]. There is need for an approximation theory that allows access
to the topological information contained in such a family.

Question 10.3. Can robust invariants be computed for these multiparameter 1145?

spaces?

This summary represents recent issues posed largely from the joint work
of Zomorodian and Carlsson and earlier work of Zomordian with Edelsbrunner.
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There is much emphasis upon homological invariants, which lies beyond the artic-
ulated scope of this article. Nonetheless these aspects are included here because
of their nascent state, portending that there may remain unresolved issues about
the underlying topological spaces as this work matures further.

11. Finite approximation and (non-Hausdorff) topology

It has been known for almost 80 years that every compact Hausdorff space is
the subspace of closed points of an inverse limit of finite T0-spaces, and that finite
T0-spaces are essentially finite posets. For many years this seemed an oddity; why
would anyone approximate the best known and best understood topological spaces
by spaces that were simultaneously trivial and nonintuitive?

11.1. Adapted inverse limit approximation by T0-spaces. The devel-
opment of computing and its need for information in bits, and more particularly
the work on digital topology from a purely topological viewpoint led to much more
intuition on these finite T0-spaces. As a result, Kopperman and Wilson proved
that these inverse systems can be assumed to have very special maps, which they
called calming maps. If this is done, the following traditional knowledge can be
recast, as stated, below.

11.2. Topological invariants. The association between an abstract simpli-
cial complex, which can be seen as a finite T0-space, and its polytope in a finite-
dimensional Euclidean space can be used as follows: The topological spaces that
most often occur in science and engineering are the metric continua. These are
often viewed as inverse limits of polyhedra and simplicial maps. The work by
Kopperman and Wilson [113] has shown that these inverse systems of polyhe-
dra and simplicial maps can be replaced by inverse systems of abstract simplicial
complexes and calming maps in such a way that the inverse limit of the former
is exactly the subspace of closed points of the inverse limit of the latter. Rather
than the Euclidean polytopes and simplicial maps, which are determined by ver-
tices and subject to round-off error, one can use precisely given finite posets and
special order-preserving maps, also precisely given. Here are some issues that
arise before these methods can be applied: While it has been known for about
three years that the above approximation can be done, no algorithm for finding
these finite posets and calming maps has been described and this method has not
been used to approximate spaces. But the digital topology needed to understand
the finite spaces was learned over a dozen years ago, in part by Kopperman and
co-workers [101, 102, 106, 108, 111, 117].

11.3. Topological consistency. Much of the relationship between this ap-
proximation method and basic general topology has been resolved. For example,
if the finite T0-spaces are connected, then so is their limit [114, 116], and so is this
subspace of closed points. Also, the relationship between the separation axioms
(particularly complete regularity, normality and hereditary normality) and prop-
erties of the finite spaces and maps has been determined [115, 116]. The authors
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are now preparing for publication results on replacing maps between the original
spaces with maps between inverse systems of finite approximants of these origi-
nal spaces. These results yield characterizations of the Stone–Čech and Wallman
compactification in terms of such finite approximations (some of this was noted
earlier [76]). But much more knowledge is needed about such replacement and its
use in computation and the preservation of invariants of algebraic topology.

A primary view from domain theory is that many important computational
topology properties correspond to open sets and not to specific Euclidean points or
scalar values [6, 82, 83]. More specifically, Kopperman and his collaborators have
characterized those topological spaces that are computable in the sense of domain
theory [109]. A special case involves those that are inverse limits of polyhedra,
creating an opportunity to include domain theoretic results into computational
topology investigations.

A summarizing research question becomes:

Question 11.1. What are the essential topological relations for visualization and 1146?

how can reliance upon domain theory and these approximating systems improve
upon the state-of-the-art to preserve key embedding (homotopy and homology) in-
variants of the models and spaces as they become visualized, both statically and
dynamically?

12. Algorithmic topology and computational topology

The work of creating KnotPlot [154, 155] has been described as “topological
drawing”. By programs based upon Gaussian energy functionals, KnotPlot ani-
mates the process of unknotting and knot simplification on specific examples of
knots. A key criterion is that the class of the knot is known a priori. This is an
important aspect, as it is known [91] that the elementary problem of recognition
of the piecewise linear unknot is in NP. Practical algorithms for knot recognition
have proven elusive, but the problem remains an important stimulus for theoretical
research [89].

This theoretical result provided valuable guidance to the work mentioned in
Section 4 on isotopic approximations. Namely, it directed attention to just pre-
serving the isotopy class of the original object even when that classification was
not known. This is an example of the “beneficial symbiosis” anticipated [63] with
algorithmic topology [124]. It leads to whether similar benefit can be gained by
consideration of other algorithmic topology recognition problems, such as these
summarized here.

The 3-sphere recognition problem starts with a given triangulation T and
attempts to answer whether the underlying space |T | is homeomorphic to the
3-sphere. It is shown that this problem lies in NP [156].

Question 12.1. Is the 3-sphere recognition problem NP-hard? 1147?
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13. Computational topology workshop of 1999

To the best of our knowledge, the first broad workshop on Computational
Topology was held in June, 1999 [21]. Its purpose was direction finding and its
majority attendance was by scientists who are primarily recognized as computer
scientists, though some pure mathematicians did attend and many of the partici-
pants are interdisciplinary in their work.

The report of this workshop is highly recommended for its broad coverage. Its
impetus from computational geometers is reflected in the very applied nature of
many of the topics and problems described. The report was not merely a descrip-
tion of technical problems, but also an attempt to identify areas, build community
and develop an agenda for future research. As such, its purposes were somewhat
different from the present article. Furthermore, because of the large number (22)
of contributing coauthors, the report covers many subjects that are not intimately
related to point-set topology. However, many of its findings are relevant for set-
ting context. Some are quoted here. Furthermore, some specific problems do
relate directly to this topology community, broadly considered. For instance, the
definition of neighborhoods for differing topologies is a common problem of inter-
est to many in the point-set topology community. Some problems, quoted below,
mention the definition and representation of neighborhoods. Within the mathe-
matics community, the specialty of low-dimensional topology is often viewed as
being quite separate from that of point-set topology. However, problems from
low-dimensional computational topology are presented here, because they depend
upon such fundamental topological notions that it is hard to separate the fields. It
is hoped that this blending of the subjects within computational topology might
lead to more interaction among these communities within more established math-
ematical communities, hopefully to the benefit of mathematics at large. Those
have been abstracted and updates provided, where relevant. Noticeably, several of
these topics and problems are well-integrated with problems already posed within
this article and that integration has been previously mentioned and is also noted,
below.

The report begins with an emphasis upon the role of geometric computing to
support the simulation of phsyical objects—“on scales that vary from the atomic
to the astronomical.”—emphasizing the role of topology in “Modeling the shapes
of these objects and the space surrounding them.” The role of information visual-
ization is expressed as relying upon “shapes and motions” with obvious topological
implications. The emphasis is upon support for geometric computing in that,

“Some of the most difficult and least understood issues in geo-
metric computing involve topology. Up until now, work on topo-
logical issues has been scattered among a number of fields, and
its level of mathematical sophistication has been rather uneven.
This report argues that a conscious focus on computational
topology will accelerate progress in geometric computing.”
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While this specific focus on the benefits to geometric computing are under-
standable, this present article presents the point of view that topologists can make
significant contributions to many aspects of computing. The “scattered” distribu-
tion throughout the literature is evident in the bibliography for this article, with
cited publications appearing in mathematical and computer science venues, as well
as within many different fields of engineering.

That the use of classical topology can “accelerate progress” has already been
quite well documented in the literature. One notable success story has been the
theorems generated by digital topologists. The wide-spread application, within
the image processing community, of the Jordan curve and surface theorems to
identify boundaries in images and partition viewed objects into parts lying inside
and outside of those boundaries led to a contemporary study of these classical
theorem, providing new proofs to apply to spaces that did not have T2 separa-
tion properties [110]. These configurations of pixels on a computer screen were
named digital spaces. While this seemed like an obvious use of a classical theorem,
various unexpected subtleties occurred in algorithms in which this theory was ap-
plied. While it was unlikely that these difficulties would provide counterexamples
that would invalidate such well-established theorems, it took the perspective of
topologists to realize that

• the proofs of the classical Jordan separation theorems relied upon an
assumption that the underlying topology was T2,

• the digital spaces were discrete when modeled as T2 topologies, and
• that weaker topologies were more descriptive of digital spaces.

These topologists then proved that the classical T2 assumption was not needed
and developed non-T2 topologies for digital spaces. The rigorous consideration of
these applied image problems led to extensions of classical theory and improved
algorithms.

Some summarizing perspectives from this report state that “Topology sepa-
rates global shape properties from local geometric attributes and provides a precise
language for discussing these properties” and that “Mathematical abstraction can
also unify similar concepts from different fields.” These notions are, of course,
well known to topologists, but it is of interest to understand that these aspects are
now seen to be attractive in furthering the development of algorithms in robotics,
molecular docking and geometric computing in general.

Some broad questions resulting from this report are summarized below, fol-
lowed by more detailed sections with specific questions under each broader item.
Again, the emphasis is upon topological issues that are most closely related to
point-set topology, ignoring others that may have more of an algebraic topology
or combinatorial topology emphasis.

13.1. Summary of broad questions.

Question 13.1. How should shape be represented?

Question 13.2. How can topology preservation be ensured in converting from one
shape representation to another?
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Question 13.3. How can physical measurements, with sampling error and noise,
be algorithmically converted into topologically valid shape representations, partic-
ularly for physical simulations that rely upon meshed geometry?

Question 13.4. How can “the development of algorithmic tools implementing
topological concepts” [63] and “algorithmic questions in topology” be integrated
for the benefit of both fields?’

Because of preceding material, the key questions for each are tersely summa-
rized.

13.2. Shape representation. This is consistent with the earlier remarks
(Sections 2, 3 and 6) about the role of regular closed sets in solid modeling. Since
this has already been discussed at some length, the relevant problems will be
tersely stated, below.

Question 13.5. Current shape representations include unstructured collections
of polygons (with no specific connectivity information among geometric entities—
often dubbed as ‘polygon soup’), “polyhedral models, subdivision surfaces, spline
surfaces, implicit surfaces, skin surfaces, alpha shapes”, solid models, procedural
models, digital and voxel models. What are the unifying topological constructs and
how should they be expressed and implemented for efficient and robust algorithms?

13.3. Topologically correct shape conversion. These issues have been
discussed in some depth in Section 4 on approximation.

Question 13.6. While there exist some methods for converting from one type of
shape representation to another, these are mostly for polyhedral models and they
are not totally rigorous or robust. How can topological principals be included in
these shape conversions to both provide broad theory and improved algorithms?
(We note that Section 4 has already discussed the inclusion of isotopy equivalence
as a criterion for approximations (often PL ones) of smooth shapes in conjuction
with traditional criteria of error bounds on the distance between one shape and its
approximant.)

Question 13.7. While classical topology has relied upon homeomorphisms for1148?

its primary equivalence relation, the geometric models in computing appear to
need a stronger equivalence relation that includes correctness of the embedding
within some low-dimensional topological (usually Euclidean) space. Is isotopy the
preferred equivalence or is there need for even stronger equivalences such as dif-
feotopy?

13.4. Shape acquisition algorithms and measurement error. Some of
the dominant approaches here have avoided the issues of measurement error and
noise. Recent abstractions [152] have proven theorems that leave open the oppor-
tunity to consider sample points with bounded measurement errors on a par with
those that are exact samples. Several questions have already been articulated in
previous sections.
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Question 13.8. How can these differing mathematical perspectives, across point-
set and differentiable topology be best integrated for optimal shape-acquisition al-
gorithms?

13.5. Shape smoothness criteria. These issues range from unexpected ap-
pearance of non-smoothness in engineering design models to the need to represent
non-smoothness in animation figures.

Question 13.9. In some cases singularities arise because of numerical approxi- 1149?

mations made, which are inherent to a finite word length for numeric representa-
tions. In other cases, particularly for the motion picture industry, there are needs
to model sharp changes in differentiability [49]. Some promising techniques have
been presented that allow flexibility in moving gracefully between these needs [165].
Is there an appropriate topological abstraction that can be mapped easily to abstract
data types that will permit appropriate representations of smoothness for differing
applications?

14. Conclusion

The bibliography is indicative of the breadth of interest in this subject, even
though many references do not necessarily include the terminology “computational
topology”. As with any article presenting open problems, this one necessarily is
reflective of the tastes and interests of the coauthors, where Sections 10, 12 and
13 are terse. This is not reflective of their scientific importance or impact, but
rather an attempt to appeal to the expected point-set topology readership of this
volume. In particular, the material presented here in those sections was directed
towards emphasizing their general topology content, while showing their broader
connections to other branches of topology for readers who might be interested in
further consideration of these related subjects.
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