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Abstract

The problem of geometric robustness is pervasive within CAGD. One aspect is to permit convenient user
specification of error bounds, so as to ensureusetulness of geometric models. Often, a useful specification
requires an additional interface between the user and the geometric tool. As intersections of spline surface patches
are fundamental within CAGD, we present a relation between model space and parameter space error bounds
for an intersection algorithm as an exemplar of the additional interface needed for practical geometric tools. In
particular, we consider the approximation of the intersection curve between two trimmed-surface patches. The
Grandine—Klein intersector produces an approximation that is accurate to within a user-specified error bound,
where that error bound is specified in parameter space. However, the end user is typically unaware of the details
of this parametric domain, so selection of a parametric space error bound often relies upon heuristics. In this note
our goal is to demonstrate how a user-specified error bound is made usable in practice through the straightforward
application of the mathematical relation between model-space and parameter-space error bounds. The conversion
of the model-space tolerance into a parameter-space tolerance is captured in a pre-processing interface to the
intersection algorithm. The software implemented has proven to be reliable, efficient and user-friendly. It is based
upon an elementary error analysis, which is also presented.
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1. Introduction

Research into geometric robustness problems dates back over 20 years, as has been documented in
the literature (Hoffmann, 1996; Peters et al., 1994; Requicha, 1980). A central topic under geometric
robustness has been intersections (Barnhill et al., 1987; Hoschek and Lasser, 1993; Patrikalakis, 1993).
Geometric-modeling systems with trimmed-surface patches typically store (Hoffmann, 1989) both
geometric information (specifying the position of the patch in model space, ustillyand topological
information (specifying the logical adjacencies of the patches). Unfortunately, tolerance values used in
modeling systems to control geometric error are often poorly understood (Ferguson et al., 1996).

Grandine and Klein (1997) have published an algorithm that computes the two parametric-domain
representations of the intersection curve with a rigorously defined parameter-space error bound. The
algorithm has been implemented as part of the DT_NURBS Spline Geometry Library (http://ocean.dt.
navy.mil/dtnurbs/) and in proprietary codén this note we discuss our experience in implementing and
testing a new interface to the Grandine—Klein (G-K) intersector that relates the error in model space to
the parametric error bound. The underlying error analysis, based on standard theorems, is also presented.
Our goal is to provide an example of the types of interfaces between users and geometric tools that will
be needed to make the most efficient use of CAGD methods.

Following the notation of Grandine and Klein (Grandine and Klein, 1997, Section 3), one parametric
surface, denoted, is parametrized byu, v) € [0, 1]?, and the other, denote@, is parametrized by
(s, 1) € [0, 1]?. The surfaces” and G will typically be non-uniform rationalB-splines (NURBS). The
exact intersection curve is given by a mapping fri@yi] — [0, 1]* (with components, v, s andt) such
that the G-K intersector creates mappings fif@yi] — [0, 1]* (with components, v, s and¢) such that

F(u(t),v(r)) = G(s(1), 1 (1)).

The G-K intersector creates approximatibg the intersection curve g% (r), 7(r)] and [5(1), 7(1)]

in the parametric domains; their respective imagéd(z), v(r)) andG(5(z), £(r)) in model space will
usually not agree. The G-K algorithm provides bounds on the efrars, v(r)] — [i(t), v(r)] and
[s(t),t(t)] — [§(1), £(1)], but not on either of the errors in model space, given as

F(u(t),v(r)) — F(a(), o(r)) and G(s(1),1(1)) — G(5(1),1(v)).

The interface supplied by Grandine and Klein may be summarized as follows; lagtd S, be the
input surfaces and letbe the user-specified error bound in model space. The output is a representation of
the intersection set, within parameter spaces, with its error bounded abevé@ iy new pre-processing
interface developed is similar, except that now the user-specified error bound is given in model space
by y. Clearly, the key link is software that converts a given model-space bpuntb its corresponding
parameter-space boundconsistent with the respective definitionsFolndG. The error analysis (based
upon standard methods) is given in Section 2.

2A proprietary Boeing implementation was used to generate the experimental software results here.
3 Such dual approximations are typical.
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2. Theerror analysis

We now restrict our attention to the surfa&éu, v). An exactly analogous analysis applieG¢, ¢).
For brevity, we write

[ug, val = [u(r), v(v)] and [uo, vol =[i(v), ()]

Then, Taylor’s theorem in two dimensions (Buck, 1956, p. 200) states that each compoAént ,af;)
can be written

F(u1, v1) = F(uo, vo) + R(u™, v™)

where
oF oF
R(u,v) = (u1 —ug)—u, v) + (v1 — vo) — (u, v)
u ov

is evaluated at some poifit*, v*] on the line segment joininfg, vg] and[uq, v1]. Suppose that, using
the bound in parameter space for the G-K intersector, we can write

lug — uol <&, lvy — vo| <&
Then it follows, with|| - || being any convenient vector norm, that

| F(u1, v1) = F(uo, vo) | <eM (1)
for any M satisfying

oF . oF .
—W*, v | + ||— W, v")
ou ov

< M. (2

For the given surface, let be an upper bound for the acceptable error in model space. In order to
guarantee that this error is sufficiently small, we will require that

eM L y.

Then software to obtain an upper bound fdrcan be implemented using any standard technique for
obtaining the maximums of the functions indicated in the left hand side of inequality (2).

Using the triangle inequality and inequality (1), applied to each surface, it is then easy to derive an
upper bound for the distance between corresponding points on the approximated boundary curves in
model space, as

|F(a(), 5(r) — G (@), 7@) | <y (F) + ¥ (G,

wherey (F) denotes any upper bound for the left side of inequality (1) (similaxié)).

In our implementation we used standard properties of spline basis functions (in particular, “partition
of unity” (Piegl and Tiller, 1997)) to bound the norm of each of the two partial derivatives. dthese
bounds permit calculation aff by means of @Qun) arithmetic operations, whema andrn are the
dimensions of the control-point array. In principle, the use of this upper bound to calewateid result
in performance degradation of the intersection algorithm. However, in practice this cost is negligible: in
our experiments there was no noticeable performance degradation versus running the G-K intersector
directly with its default parameter-space error bound. On the other hand, there is considerable advantage
provided by this new interface for obtaining acceptable intersections on the first try, rather than by trial-
and-error iteration.
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Table 1
Upper bounds and maximum measured values
e y(F)+v(G) GKp
1073 3.03x 1071 1.64x 102
1074 3.03x 1072 2.34x 1073
107° 3.03x 1073 331x 1074
10°6 3.03x 1074 3.67x107°

There is, of course, a theoretical risk that the calculated badrid unduly pessimistic, specifically
when the norms of the partial derivatives are relatively large in a part of the parametric domain that is far
from the trimmed patch. This problem could be avoided by finding a tighter bound in the neighborhood
of the trimmed patch, for example, by surface subdivision, but in our experimentation this was not
necessary. Note that both the parameter-space and the model-space error bounds are global over the
entire intersection set. Hence, issues of subdivision are appropriately left to the end user and are beyond
the scope of the results we present here. A representative test case is summarized in Table 1 for the
intersection of a plane with the extrusion of a spiral curve having varying curvature.

3. Conclusion

We have presented an analysis and a user interface to allow for user specification of model-space
error bounds on the output of an intersector algorithm. This approach has an algorithmic conversion
of the specified model-space error bound into a corresponding parameter-space error bound, which is
already expected as input to the intersection algorithm. However, this automatic conversion then makes
the intersector more usable in practice, because the required parameter-space bound varies with input
surface characteristics, as this presentation shows. This interface then allows the user to specify the final
desired model space bound independently ofapriori analysis of the input surfaces. As intersection is
fundamental and typical, this note can be used as an exemplar for similar analyses and interfaces for many
geometric algorithms. Our reliance upon Taylor's Theorem is basic, fundamental and extensible. Indeed,
as the underlying mathematics is elementary, there appears to be little justification for any geometric
implementation to fail to incorporate such user-friendly interfaces.
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