
Algorithmic Tolerances and Semantics in Data Exchange

T. J. Peters*

Computer Science &Eng. U-155

University of Connecticut

Storrs, CT 06269-3155 USA

tpeters@eng2.uconn. edu

D. R. Ferguson

Boeing

Seattle, WA 981242207 USA

drf@espresso.rt .cs .boeing.com

Abstract

Within industrial contexts, a common view of the level of
confidence needed in CAD data transfer processes may be
expressed as “1 don’t mind if the [CAD data- tmnsfer] algo-
rithm sometimes has difficulties, provided I get a warning
message that tells me something has gone wrong. ” A partic-
ularly annoying, even mystifying, CAD data exchange prob-
lem occurs in the so-called ‘round-trip’ problem. There, an
acceptable model is transferred from an originating system
to a neutral format and then back to the original system,
only to find that serious new flaws now appear in the model
within the originating system.

1 Introduction

The question of ensuring the integrity of data exchanges be-
tween companies is of great importance in Computer-Aided
Design (CAD). Indeed, the problem is serious enough, and
importaut enough, to have spawned a fairly large industry
dedicated to its solution [5].

One integrity issue is the desire for consistency of topol-
ogy and geometry data. Design models contain symbolic
and numeric data types expressing, respectively, topology
and geometry, with some level of interaction between the
two. The symbolic data is exact, whereaa the numeric data
suffers the errors of floating point arithmetic. The unavoid-
able nature of this disparity is well recognized; attempts to
resolve it are baaed upon the use of tolerance values. When
we say that the geometry and topology are inconsistent, we
mean, for example, that the symbolic data indicates that

*This author acknowledges, with appreciation, partial fund-
ing for this work received under National Science Foundation
Grant Number MII-9308346 and the hospitality of the Univer-
sity of Montr6al during sabbatical leave. The views expressed
herein are of this author, not of the Foundation.

tThe research of this author was supported in part by a grant
from the Natural Sciences and Engineering Rezearch Council of
Canada

Ihmiw(m (0 mokc dlgilnlh:lr(i LtJpIcs o1’o11 (w Imtl ol’lhis nmlcnal li~r

pmson;il (w cl;,swoom usc IS ~mnlcd ,$,Ilhlttt Icc III,II,IcICCILhatlhc copficb
are ml Ind(lc or dislrihllt(t liw prolil (w L,OIIWIL’rL’Ial iI(ivwlingc. (k uqn -

righl n(Mict. {k Iillc 01’IIIc p(lhllc.dioo Jml IIS dJlc appear. ;IIKi 1101102M

given Ihvl copyighl IS Ily pmmw,m o1’11,. ,\ C’Xl. Inc, “1’0 copy ollkmvisc.

to republish. 10 posl on scrvm or l,) rdislrlhl!lc {o ilsLs,t’cquwcsspccilic’
permission amlhr I>c

(.;oJIIpIif,~fI<>ncI/(;c?onwlrJ‘)- Nice I:mncc

Copyrigh[1997 ;\{’\l ft-X’)7’~I -X7X-’)97 0(, S3.50

N. F. Stewartt

Dep. IRO

Univ. de Montr6al

Montr6al, Qc, Canada H3C 3J7

stewart @iro. umontreal. ca

P. S. Fussell

Alcoa Technical Center

Alcoa Center, PA 15069 USA

fussell_ps@atc. alcoa. com

two geometric elements me adjacent, yet the corresponding
floating point data implies that they ~e disjoint. - -

Particularly vexing (sometimes mysti~ing, even to sea-
soned CAD practitioners) is the ‘round-trip’ data exchange
problem. This describes the following exchange pathology.
The model has topological and geometric consistency in its
native system. It is moved to an exchange representation
(like STEP) [6], where the consistency is preserved. How-
ever, upon being transferred back to the native system, the
model may no longer be consistent. We illustrate how and
why this can happen, and indeed, why it is even likely for
some class of problems.

2 Related Work

Some evidence [5] indicates that model transfer cam be im-
proved when the STEP default tolerances are replaced by
ones more closely adapted to those of the input system.
In a similar vein [5], several illustrative examples of topol-
ogy and geometry inconsistency were created, and labeled
as ‘gap problems’, where two entities are adjoint by their
topological data, yet their geometric data indicates they are
disjoint.

New intersection algorithms [2, 3] incorporate tolerance
intervals that are adaptive to the numerical errors com-
pounded by extensive geometric computations.

Backward error analysis [1] has been performed relative
to the errors for certain geometric algorithms.

3 Example

Consider the simple illustrative geometry of Figure 1. Ver-
tex VO serves as a trimming endpoint for edge EO, with VO
being within tolerance of EO.

●

EO Vo

Figure 1: Simple Illustrative Geometry

Now, during model transfer, EO could be perturbed suffi-
ciently so that VO was no longer within tolerance of EO. For
example, suppose the line segment indicated was represented
in the native system by an abstract data type having two

403

geometric points, with the metric used for tolerance compar-
isons in the originating system being the Manhattan (also
known as the taxi-cab) metric, For points PO = (zo, go) and
PI = (xl, VI), the Manhattan metric is given by the equation

dlw(po,pl) = Izo –Zll+ 1% –Yll

Suppose also that the neutral transfer representation called
for lines to be represented in the format of an originating
point and a directional unit vector with a separate scalar
for its magnitude. In the conversion of the original line
representation into the neutral format, some numerical error
could occur, thereby perturbing EO.

Suppose VO was transferred exactly (via faithful bit trans-
fers) and the tolerance values for the neutral format were
identical to that of the originating system, but that the
metric used to test for a point being on an edge within the
neutral format was the Euclidean metric, whose convex unit
sphere contains that of the Manhattan metric. For points

PO and PI, the Euclidean metric is given by the equation

&(Po,Pl) = /(zo –21)2 + (yo – yl)z

The Euclidean metric, by virtue of its larger unit sphere,
could still have the perturbed edge within tolerance of VO,
as is indicated in more detail in Section 4 and Figure 2.
Hence, the model could be topologically consistent in both
its original form and in its neutral transferred format. How-
ever, since EO has been perturbed, when the model is trans-
ferred back to the originating system, the more sensitive
Manhattan metric could determine that the tolerances were
violated, as shown in Figure 2.

This illustrative example appears to rely crucially upon
the differences between the Manhattan and Euclidean met-
rics. However, a moment’s reflection shows that even if
both metrics were Euclidean, then merely slight differences
in their coded implementations (for instance, use a squar-
ing operation versus explicitly multiplying an argument by
itself) could lead to simikr inconsistencies. Furthermore,
the first author has reviewed many instances of commercial
CAD/CAM implementations where the two cited metrics
were used interchangeably, with no provision for their dif-
fering characteristics. These differences are symptomatic
of semantic inconsistency across module interfaces. In this
example, the expression of each individual metric is math-
ematical y valid, yet the ensuing communication does not
preserve the intended meaning.

A simplistic approach to resolution might be just to per-
turb the co-ordinates of VO slightly. Alternatively, for the
simple geometry depicted, a slight linear extrapolation of
EO might be appropriate. While these approaches might re-
solve this particularly simple geometry, it is clear that nei-
ther approach is extensible to general situations. Note, that
for more complex models, the point perturbation ‘solution’
could be fraught with all the difficulties of changing one
item in a highly interrelated constraint network, and the
linear extrapolation ‘solution’ would be totally inapplicable
for curvilinear geometry.

4 More Complex Geometry

Figure 2 depicts the original curve aa a dotted line, shown to
be within the tolerance neighborhood about a point relative
to the Manhattan metric, shown as a dashed diamond. The
perturbed curve and the Euclidean tolerance neighborhood
we shown with solid display.

Figure 2: Two Tolerance Neighborhoods

The conversion of the line representation could be im-
plemented in various ways, but the floating point operations
invoked contribute to the error incurred. The representation
conversion for the line segment is particularly simple. Yet
the ideas expressed are indicative of more complex geom-
etry. Consider a trimmed Non-Uniform Rational B-Spline
(NURBS) curve represented in one system, with the intent
to transfer it to another system. The originating data would
consist of the trimming point and an abstract data type for
the NURBS curve. The condition that the trimming point
was ‘on’ the NURBS curve would typically be expressed by
the distance between the point and the curve being less than
some tolerance. Even if one were to suppose that the two
communicating systems had identical tolerances and met-
rics, problems could occur. For instante, suppose the receiv-
ing system could only represent B6zier curves. Then, the ex-
change would require a conversion of the NURBS represen-
tation into its best B6zier approximant. The errors induced
with that conversion, both due to the curve approximateion
and to floating point arithmetic, could be such that the dis-
tance from the trimming point to the curve would exceed the
tolerance, implying that the trimming point was no longer
‘on’ the curve. The situation is further compounded when
the communicating systems invoke diiTering tolerance vaf-
ues. Furthermore, this illustrative example considered only
a dedicated transfer from one system to another, whereas,
in practice usually additional conversions are necessary to
and from a neutral intervening format.

5 Software Design Issues

The tolerance neighborhoods (Manhattan and Euclidean)
depicted in Figure 2 model the situation where geometric
co-ordlnatea are known with sufficient uncertainty that they
could lie anywhere within the depicted tolerance neighbor-
hoods. For ease of discussion, consider the location of the
individual point to be iixed, as is consistent with our dwus-
sion of the transfer example. Then the neighborhood about
the point can be considered the region in which there exists
non-zero probability for non-void intersection with the line
segment. To fully model the underlying semantics would
require assigning a probability distribution over this neigh-
borhood. If one were to assume simplistically that the prob-
ability distribution were uniform, the Euclidean neighbor-
hood’s greater area reflects a more pessimistic view of the
uncertainty of the data than does the smaller Manhattan
neighborhood.

Our critical issue is to emphasize that these ‘hidden as-
sumptions’ must be explicated and their choices justified, as
these seemingly innocent choices may have unintended im-
plications. Resolving all such concerns is essential for estab-
lishing fully consistent, logically correct, formally verifiable
semantics for geometric modeling. The cost to do so will be

404

high. But it is our judgement that the failure to do so will be
much higher, where the fourth author provides perspective
on recent supporting evidence from Alcoa:

About 18% of our best CAD engineers’ and de-
signers’ time is spent on re-asserting the con-
sistency of our models (these problems require
too much insight for our medium skilled design-
ers to quickly solve). At Alcoa, we expect that
proper semantics could help us reclaim a sub-
stantial portion of time of our best people, but,
more importantly, we will more effectively com-
municate with our suppliers and customers.

The fundamental difference for the level of consistency
seen for the original, neutral and final models arises from
two causes

● the differing use of ‘metric’, and

. the separation distance being near the tolerance limit.

Within a single system, adherence to contemporary soft-
ware engineering principles can be effective as a disciplined
means to enforce consistent semantics. For instance, the
use of a metric should be standardized within one system.
It should be extracted as a separate mathematical utility.
All software engineers should then access this code, when
needing such a utility. Even in the presence of such effective
technical steps, it remains imperative to have ongoing inter-
nal education amongst software engineers to inform them
of the importance of adhering to these standards while im-
plementing deviating code only under carefully controlled,
approved and documented circumstances. This does noth-
ing to help Iegacy code which may fail to conform to these
standards and the re-engineering of such code can be an
expensive undertaking.

The demands for ensuring such semantic consistency be-
come significantly more complex when one considers the is-
sue outside the controlled bounds of writing software for only
one system. Those more complex issues will be discussed in
the next section.

6 Next Steps

The round-trip problem, as illustrated, was due to semantic
differences across the exchange interface and to the separa-
tion d~tance being near the tolerance limit. The round-trip
problem was chosen x one of the simplest transfer problems
to illustrate the need for consistent semantics. Clearly, the
problems become even more complex for exchange amongst
multiple CAD systems.

For ease of exposition, our example deliberately focused
upon the use of the szhne tolerance values. The problem
becomes more complex when many dfierent tolerance val-
ues are used, as is reasonable in a large system, where the
tolerance values are locally adapted to specific algorithmic
needs. It then seems appropriate to rationalize the inter-
play amongst all such values. An assessment of the success
of past practice in isolating all such subtle dependencies has
been pessimistically expressed [4]:

System tuning by adjusting tolerances creates a
subtle coupling of otherwise disjointed subpro-
cesses within the system. Tolerance matching is
then required. This is difficult or impossible to
document. To make matters worse, tolerances

are the most tempting control handle available
for software maintenance. A programmer may
fix a problem by changing a tolerance slightly
without fully understanding the implications of
the change,

Among users, there is likely to be little guidance
beyond a few rules of thumb.

However, we do not view this pessimism as reason to
despair. Rather, we expect that the failures to date can
be somewhat overcome by a more abstract mathematical
approach to these problems. The combinatorial complex-
ity certainly argues that simplistic methods will not sutlice.
The history of developing successful compilers for program-
ming languages should prove instructive. Compiler theory
must address issues of significant combinatorial complexity
and it was necessary to develop correspondkgly rich math-
ematical semantics for formally verifiable compilers. Such a
development of new semantical theory for CAD tolerances is
likely to be a long term project, but there are some helpful
steps that can be taken in the interim.

Different conceptual approaches to algorithms (such as
Manhattan versus Euclidean) could be unified. This might
be particularly helpful, if even differences of implementation
(squaring function versus repeated multiplication) could be
avoided. This might suggest, (at least in the CAD arena)
creation of some standardized geometrical libraries. This
would be offering a solution by means of ‘shared code’, only
a slightly more sophisticated approach than requiring ho-
mogeneous design environments for data exchange. Even
shared code would not address the question ss to slightly
diEerent results on different architectures. The use of such
libraries would require extensive rewriting of existing com-
mercial CAD systems and such effort may be economically
prohibitive. While such retroactive fixes may not be feasi-
ble, that software architecture ideal should serve as a guide
to future CAD software design and development.

A more immediate approach may provide a partial re-
sponse to the issue raised in the abstract, above, relative to
user notification. When computed values come ‘close’ to the
tolerance limits of the communicating CAD system and/or
of the transfer software, this situation should be flagged be-
fore any transfer is executed. It would require an interface
to internal tolerance values used in both the communicating
CAD systems and the transfer software. The result could be
a warning, ‘near tolerance-may require user intervention’.
So warned, the user could then decide to take responsive
action.

References

[1] Desaulniers, H., and Stewart, N. F., Robustness of nu-
merical methods in geometric amputation when prob-
lem data is uncertain, CAD, 25 (9), pp. 539-545.

[2] Hu, C.-Y., Patrikalakis, N. M., and Ye, X., Robust in-
terval solid modeling, Part I: representations, CAD, 28,
1996, pp. 807-818.

[3] Hu, C.-Y., Patrikalakia, N. M., and Ye, X., Robust
interval solid modeling, Part II: boundary evaluation,
CAD, 28, 1996, Pp. 819-830.

[4] NURBS White paper, Automotive Industry Action
Group, Southfield, MI, 1991.

[5] PDES, Inc. Geometric Accuracy Team, Interim Report,
24 July, 1996.

[6] ‘STEP on a page’, http: //www.nist.gov/sc5/soap/

405

