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Abstract

We report new techniques and theory in computational
topology for reconstructing surfaces with boundary. This
complements and extends known techniques for surfaces
without boundary. Our approach is motivated by differen-
tial geometry and differential topology. We have also con-
ducted significant experimental work to test our resultant
implementations. We discuss some problematic issues that
can arise regarding the roles of the medial axis and sam-
pling density. The crucial topics forC2 manifolds are

1. important defining properties ofC2 manifolds with
boundary,

2. creation of auxiliary surfaces, with emphasis near the
boundary,

3. sampling density, and

4. successful practical algorithms and examples.

Keywords: surface reconstruction, twice-differentiable
manifold, differential topology, differential geometry,
medial axis.

1. Introduction and Motivation

The primary contribution of this paper is to present new
theory and techniques for topology-preserving reconstruc-
tion and approximation of surfaces. This paper reports new
results on

1. computational topology properties ofC2 manifolds
with boundary, and

2. successful practical algorithms and examples.

Partial results are reported, regarding

1. approximations based on auxiliary surfaces, with at-
tention to boundary characteristics and

2. sampling density.

For each surfaceM with boundary, we construct an
auxiliary surface, called anenvelope. We use the envelope
to perform approximation and reconstruction of surfaces,
specifically inclusive of those with boundary. We discuss
our implementation of code that enriches the class of sur-
faces that can be considered, and we articulate the support-
ing practical algorithms that are derived from our theoreti-
cal and experimental investigations.

A comparison between the images of Figure 1 and Fig-
ure 2 show the value of our method. An original trefoil sur-
face was created for these experiments by a linear extru-
sion of a trefoil curve, so as to produce no self-intersections.
This trefoil surface is like a ribbon with the correspond-
ing knot for its two boundary curves. Figure 1 is a series
of reconstructions using the envelope technique with dif-
ferent sample densities, with the density decreasing from
left to right. Figure 2 is the same using direct reconstruc-
tion from the PowerCrust algorithm. We note that, for the
same sampling densities, the method based upon use of the
envelopes in Figure 1 appears to converge nicely to the de-
sired trefoil surface, while the direct reconstruction of Fig-
ure 2 does not. We note that the well-known Power Crust
algorithm was not designed to accept surfaces with bound-
ary. However, in practice, the Power Crust algorithm has
been found to be useful for reconstruction of some surfaces
with boundary, with possible reliance uponad hocmodifi-
cations [5]. Hence, our interest in our comparisons is to be-
gin to formalize a rich admissible class of input surfaces for



a provable implementation of ambient isotopic approxima-
tions. A related example is presented for an unknot surface
in Section 7.2.

Several recent approaches to topology-preserving sur-
face approximation have been restricted toC2 2-manifolds
without boundary [4, 7, 14, 23]. The approach taken in the
CoCone software specifically attempts to recognize under-
sampling near boundaries to improve reconstruction for sur-
faces with boundaries [13]. For some practical surface re-
constructions, a heuristic method has proven generally suc-
cessful for approximation of some manifolds with bound-
ary [5]. In a related article [14] on surface reconstruction
for computer-aided geometric design, questions were posed
about the possibility of creating algorithms for surfaces with
boundary. The approach offered here is responsive, postu-
lating new assumptions for input to be sufficient for ap-
proximation of surfaces with boundary. While some meth-
ods [3, 5, 9] have had some success reconstructing surfaces
with boundary, the scope of the class of admissible surfaces
with boundary was not definitively articulated and was pre-
sented as a result of experimental observation. This work
specifically provides new theory that allC2 surfaces with
boundary can have arbitrarily close ambient isotopic re-
constructions (dependant, of course, upon sufficient sam-
pling density, corroborating other published results [9]) and
shows resultant practical implementations. These consider-
ations about boundary are critical for practical engineering
application.

As initial motivation for the practical value of our re-
sults, we refer to Figure 3, below. The object to be recon-
structed is a cylinder with boundary curves at both ends,
having no top or bottom. The left side of Figure 3 is rep-
resentative of the results that could be expected from many
contemporary algorithms, whereas the right side of Figure 3
shows our significantly improved boundary reconstruction.
The normals and tangents of the surface are used to define
sample points on the envelope around the boundaries. The
reader will also note the differing tessellations between the
left and right images, and this remains the object of further
study. (Similar differences for the tessellations are also evi-
dent in Figures 4.)

The paper is organized as follows: In Section 2, we sum-
marize related work. Section 3 provides an overview of the
theory and extensions. Implementation and graphical exper-
iments of these new techniques are presented in Section 4.
Section 5 presents our algorithm. Section 6 contains a dis-
cussion of hypotheses about admissible input data for our
techniques. Section 7 presents observations about the in-
fluence of normal approximations and sampling densities.
Closing remarks are given in Section 8.

2. Related Work

An emphasis upon topological guarantees for surface ap-
proximants has recently appeared in the literature on surface
reconstruction [4, 7, 14]. For surface reconstruction, it is
typical that only point cloud data is assumed to be available,
while the methods presented here rely formally on max-
imal curvature and minimal separation distances. For our
foot and bunny examples, which are based upon point cloud
data, we estimated these geometric values in order to per-
form an improved surface reconstruction. These curvature
and separation values will often be available for reverse en-
gineering of manufactured objects [19]. While our reliance
upon these values remains the subject of further study, the
methods presented here will be directly applicable in many
graphics applications, when the surface definitions will al-
ready be given and the relevant problem will be to pro-
duce a topologically correct approximation. For instance,
related earlier work by some of the present authors [8] has
been used to prevent undesirable topological changes dur-
ing object deformations [16] for animations. The methods
presented here will provide even more general criteria for
an animator to preserve the critical topological character-
istics of an object as it changes across successive frames.
Some previous topological guarantees relied upon knowl-
edge of the medial axis [3, 4, 11, 14, 15], which implicitly
captures this curvature and separation information. We con-
tinue to look for unifying themes, but it should be clear that
some estimation of a bound on surface curvature is crucial
to any well-defined surface approximation method.

The theoretical concerns in providing topological guar-
antees for surface approximations near boundaries have
been presented in the literature [5, 13, 14, 17] within the
context of approximants created during surface reconstruc-
tion. The paper [13] presents a theoretical approach for us-
ing Voronoi diagrams on sampled data to detect boundary
points and this is used as the basis for the CoCone algo-
rithm and implementation. The CoCone software is avail-
able for download and it is shown to be effective on exam-
ples with boundary. The paper [5] presents a heuristic argu-
ment to reconstruct a surface with boundary, with a relevant
example being the reconstruction of a foot. In a different ap-
proach [14], a similar example of a foot is reconstructed as
a manifold without boundary to avoid undersampling prob-
lems often experienced near the boundary. Both of these ap-
proaches for boundaries [5, 14] were pragmatic responses to
the known difficulties of reconstruction of boundaries from
unorganized sample points. The CoCone approach [13] is
specifically designed to handle boundaries and this code is
also demonstrated on a foot reconstruction. As all the the-
ory for all three approaches depends on sampling relative
to the medial axis, it is worth noting that it has also been
shown [17] that the typical sampling input for surface re-



Figure 1. Trefoil A

Figure 2. Trefoil B

construction is not sufficient, in general, to permit a topo-
logically faithful reconstruction of the medial axis of the
surface with boundary.

The value in preferring ambient isotopy for topologi-
cal equivalence versus the more traditional equivalence by
homeomorphism [26] has previously been presented [7, 23]
and the interested reader is referred to those papers or to a
standard mathematical text [18] for formal definitions. In-
tuitively, two closed curves will not be ambient isotopic
if they form different knots, which can only be converted
into each other by “untying” one knot and retying it to
conform to the other, even while all knots are homeomor-
phic. For curves, a theorem has been published that pro-
vides for ambient isotopic piecewise linear (PL) approxi-
mations of a specifically described class of curves [20], in-
clusive of both those with and without boundary points, mo-
tivating the present investigation to surfaces with boundary.
For our methodology, we define the terminologythe enve-
lope of a surface. The use of the termenvelopehas previ-
ously appeared with applications to tool-path generation for
a specialized class of parametric surfaces [22]. The defini-
tion given there [22] is based upon isoparametric curves of
the surface and is different from our usage. We expect that
the contexts are sufficiently different that no confusion will
result.

The present work emphasizes the integration of concepts
from low-dimensional topology and differential geometry
into the emerging sub-discipline of computational topol-
ogy, as a complementary contribution to the incorporation
of combinatorial topology and computational geometry for-
malisms that have already appeared [6, 12].

3. Preliminaries and Theory

In order to keep this section short, we refer the reader
to standard definitions of a manifold with boundary [10],

which are also summarized by the present authors in techni-
cal reports available on-line [1, 2]. As an intuitive overview,
it suffices to observe that the differentiable properties along
the boundary must follow as continuous limits of the corre-
sponding differentiable properties within any neighborhood
of a point on the boundary. In essence, this means that each
compactC2 manifoldM , with boundary, can be consid-
ered as a submanifold of a compactC2 manifoldN without
boundary.

The following definition of an envelope of a surface is
central to our approach. Its use was motivated by a careful
examination of the proofs previously presented [7, 23, 24]
for reconstructingC2 manifolds without boundary, which
revealed a critical reliance upon a positive minimum dis-
tance between a surface and its medial axis. This has pre-
viously been proven forC2 surfaces [7], but the extension
here required showing that there also be a positive mini-
mum between the envelope of aC2 surface (as defined be-
low) and the medial axis of this envelope. It is easy to show
that this envelope is a surface without boundary, but, in gen-
eral, the envelope will not beC2. However, we were able to
show that this envelope had sufficient smoothness to still
conclude that there was a positive minimum distance be-
tween the envelope of aC2 surface and the medial axis of
this envelope. (The smoothness condition is stronger than
C1 and is known asC1,1. For more details the interested
reader is referred to our theory pre-print [2] .) While algo-
rithms for computing this lower bound are still evolving,
our prototype software suggests that these algorithms will
have many performance and stability advantages over algo-
rithms to approximate the medial axis. In the definition of
the envelope, below, the value ofρ is less than the positive
lower bound on the distance between the envelope and its
medial axis. A subtle distinction about the new theory pre-
sented here is that it doesnot depend upon anexplicit cal-
culation of the medial axis.



Figure 3. Comparison of Methods for Cylinder

Definition 3.1 For suitably chosen values ofρ > 0, the
ρ-envelopeofM , denotedEρ(M) is defined as

Eρ(M) = {p ∈ R3 : d(p,M) = ρ} .

It is not necessary to assume thatM is orientable for our
definition of theρ-envelope, as given here. (A typical ex-
ample of a unorientable surface with boundary is a Möbius
strip.) The following theorem justifies the role of the enve-
lope and its proof is presented in related pre-prints [1, 2],
which also provide the bounds onρ.

Theorem 3.1 If M is C2, then, for anyε > 0, there ex-
ists a sufficiently small value ofρ such that itsρ-envelope
has a minimum positive distance to its medial axis so that
it is possible to explicitly define an ambient isotopic PL ap-
proximation toM via the nearest point mapping, where the
distance betweenM and its approximation will be strictly
less thanε.

4. Computational Examples

The details of our theory presented in our pre-print [2]
show how to create approximants that are ambient iso-
topic to Eρ(M), as well as approximants that are ambi-
ent isotopic toM . The examples presented here were mo-
tivated by that theory. They were created with new code
as a pre-processing interface to the Power Crust algorithm
in order to produce ambient isotopic approximations to
Eρ(M). Complete adherence to the theory of our compan-
ion paper would have also required implementation of post-
processing code to extract a subset of the Power Crust out-
put to be ambient isotopic toM . This additional code has
not yet been implemented. The examples presented here
demonstrate a viable alternative to that full implementation.
Namely, the component of the medial axis ofEρ(M) that
lies interior toEρ(M) is equal toM . Since the Power Crust
also produces an approximation of this interior component
of the medial axis ofEρ(M), this approximation is taken as

an approximation ofM . For the examples presented that
compare our results with direct reconstructions from the
Power Crust, we reiterate, in fairness, that the Power Crust
algorithm was not designed to accept surfaces with bound-
ary.

To explain our technique, experiments that were per-
formed on NURBS surfaces are presented first in this pa-
per. The techniques developed on the NURBS surfaces were
then applied to challenging sets of point cloud data [14, 25]
and our improvements are discussed. This approach permit-
ted a controlled environment to analyze the results obtain
by the envelope technique. All the information necessary to
produce an envelope may be found analytically in a NURBS
surface representation. The normals, partial derivatives and
maximum curvature can be readily obtained to produce a
precise envelope. This information, together with an esti-
mate of the minimum feature size [3], then can guide the
sampling rate to guarantee an ambient isotopic approxima-
tion similar to techniques already discussed in the literature
[7] which are extended in our companion theory paper [2].
The examples presented here show that an accurate enve-
lope construction will yield a faithful and desirable recon-
struction.

4.1. Foot Example

The example presented here is a challenging one already
seen in the literature. One method specifically is designed to
reconstruct its boundary [13]. Another used an heuristic ap-
proach to respect the boundary [5] and an alternate method
was presented to close off that boundary [14]. Here, no sur-
face definitions were known in advance (in contrast to the
other examples presented) and the point cloud data was pro-
vided by the previously cited author [14].

Figure 4 has two images. On the left is a direct recon-
struction of the foot from the sample points provided us-
ing the Power Crust algorithm. This image also has an en-
larged view of the boundary region near the ankle, where
there are many artifacts which result in a closed surface.



Figure 4. Comparison of Methods: Foot Data

The right image shows a reconstruction of the foot using
the same original sample points as input to the pre-process
that builds the envelope of this data. Again, there is a closer
view of the boundary region near the ankle, showing that
the boundary is more faithfully reconstructed.

Figure 5 has four images. The top left shows the orig-
inal sample points for the foot, where these points were
measured by a laser scan of the actual foot, and then their
(x, y, z) co-ordinates were recorded in a text file. The top
right shows the polar balls produced by the Power Crust,
representing the radial field of the approximated medial axis
of the point cloud. In this top-right image, noise is evident
near the toes. The bottom left shows a sampling of poles
determined from the Power Crust algorithm. The poles ap-
proximate normals to the original surface. The bottom right
shows a point cloud representation for the envelope enclo-
sure for the original point cloud. Since surface normals are
central to the definition of the envelope and none are ex-
plicitly available here, envelope points are determined along
the poles at a distance from the medial axis that is equiv-
alent to the radius of the polar balls and offset in both
directions. This foot envelope was constructed adaptively,
where we experimented with varying the radius with loca-
tion of the sample point in a modification of our definition
of the envelope. This results in a tighter envelope around the
toes and a slightly more generous envelope around the an-
kle. Along the boundary, additional points are created with
user specified normals and tangents, appropriate to the enve-
lope construction. This aspect currently remains within the
judgement of the user, but the success of these experiments
leads us to further investigate the theoretical constraints that
would be involved formalizing this adaptive technique.

4.2. Split Bunny Example

It was also of interest to see how the techniques reported
here would scale to large sets. Hence, the point cloud from
the ‘Stanford bunny’ was considered [25]. In order to test

our software, the bunny data set was partitioned to produce
two surfaces, each having a very visible boundary. Our en-
velope techniques were then invoked along these newly in-
troduced boundaries (The five holes in the base were con-
sidered to be small enough to be ignored in our analysis
and reconstruction.) Each piece was then reconstructed with
our approach, as shown in Figure 6. One can observe some
missing triangles, for instance, near the tail. Further exper-
imentation with our method and detailed comparisons to
other techniques may result in future refinements.

4.3. Discussion of Input Needed and Final Output

Our foot reconstruction presented here significantly im-
proves the foot boundary (near the ankle) and generally
compares well with previous methods [5, 13]. Our results
are generally comparable to those for CoCone [13]. These
comparisons are subtle, though, and remain the object of fu-
ture study. Our primary advantage is a reliance upon prov-
able techniques over a well-defined class of permissible in-
put surfaces. The CoCone software has the flexibility of
variable ranges for user adjustments to the reconstruction.
Ours relies on one parameter, which is defined in terms of
curvature and minimal separation distance between points
on the original manifold. Even when these cannot be di-
rectly computed, it is often possible to find positive lower
bounds, which is sufficient. The relative advantages of these
two differing approaches to reconstruction on manifolds
with boundaries warrants further investigation.

In a further comparison between our methods and Co-
Cone, we also attempted to reconstruct the trefoil knot de-
picted in Figure 1. There is an input parameter to CoCone
for “flatness” which guides analysis of the Voronoi cells
for determining the boundaries of the surface [13]. How-
ever, the authors of this current paper have not been able to
choose any set of CoCone input parameter values to pro-
duce a completely correct topological result of the trefoil.
There are still other input variables that may be adjusted, but



Figure 5. Stages of Method: Foot Data

it remains uncertain whether this input combinatorial prob-
lem can be easily solved to produce a correct result, even in
this simple case. Further study is warranted, but an advan-
tage of our work is that our algorithm does not require any
user inter-action. A representative set of images from our
CoCone studies are given in Figure 7.

This Figure 7 was created with the densest sample set
that was used with the earlier experiments for Figures 1
and 2. The variation from left to right was in terms of in-
put parameters to the CoCone software. The parameters
were radius and flatness. The radius was fixed at 0.01 and

the flatness varied from left to right, as follows: 1.2, 2.4,
4.8, 9.6, 28.4 This appears to show some advantage for our
techniques on objects which have topologically complicated
embeddings, like knots. In all the images shown here, there
are occurrences of spurious geometry near crossings that do
not occur in the left-most image of Figure 1. In experiments
undertaken, the number of artifacts decreases as the flatness
value is increased; however, these artifacts were not elimi-
nated and at the highest value holes begin to appear in the
reconstruction.

The other primary approach to this problem [14] is not



Figure 6. Split Bunny

Figure 7. Trefoil by CoCone

directly comparable, as it eliminated this boundary, whereas
we preserve it. However, the results of Subsection 4.1 can
be compared to the other experiments to show that our re-
construction is sensitive to the absence of critical geometric
data, which we attribute primarily to the need to approxi-
mate normals and ball radii to use in our envelope construc-
tion technique. Those approximated normals are shown in
the lower left of Figure 5 in addition to the polar balls which
indicate the accuracy of the medial axis approximation. Ar-
tifacts in the foot reconstruction appear in the form of holes
and local maximum/minimum that are inconsistent with the
original geometry, as seen in Figure 4.

5. Summary of Algorithm

The algorithm, its input and some example output have
been presented. The algorithm is now summarized in the
following pseudocode. We re-emphasize that our recon-
struction algorithm avoids direct reliance upon calculation
of the medial axis. For a compact,C2 manifoldM , denote
as follows:

• S = a set of sample points ofM , with appropriately
chosen density,ε > 0. (The density requirement is that
for every pointx ∈ M , there exists a points ∈ S
within ε of s, denoted asd(x, s) < ε.)

• λ = the minimum positive distance betweenM and its
medial axis,

• Br(x) = 3-ball of radiusr centered atx, with r > 0,

• K̂ = an approximation toEρ(M), created within the
algorithm, below.

• ψ denotes the nearest point mapping,

ψ : M → Eρ(M).

(This mapping will be into Eρ(M), but not onto
Eρ(M)).

• Ψ denotes the mapping defined onM to extendψ as
follows: For eachx ∈ M , determineΨ(x) as that
unique point along the ray fromx throughψ(x) that
is the nearest point of̂K to x.

Reconstruction of Manifold with Boundary

Input: S
1.Chooseρ such thatρ ∈ (2ε, λ);
2.For eachx ∈ S, createBρ(x);
3.LetD =

⋃
x∈S Bρ(x);

4.Find∂D as an approximation toEρ(M);
5.SetK = Ψ(M)

Output: K

Comments:

1. BothD and∂D are created, in the algorithm, above,
so that∂D is an approximation ofEρ(M). These ap-
proximations are practical computational steps that are
not specifically mentioned within the companion the-
ory paper [2]. Additional care must be taken to ensure
that these approximations ofD and∂D, as wellŜ, are
sufficiently well chosen so that̂K will be ambient iso-
topic toEρ(M). The experiments reported in this pa-



per demonstrate that the techniques used here are rea-
sonably robust.

2. ThatK is an ambient isotopy ofM relies upon the
functionψ : M → Eρ(M) being a homeomorphism
onto the image ofψ, which is then used to show that
M and the image ofψ are ambient isotopic.

3. The approximationK will generally not be PL, as the
image of∂M will not be PL underΨ. However, as dis-
cussed in the companion theory paper [2], onceK is
obtained, further approximations are possible to cre-
ate a PL ambient isotopic approximation ofM .

4. Some subtleties remain for creating a computational
representation ofK as the image ofM underΨ, both
for the above algorithm and for the immediately pre-
ceding item #3. While it is easy to state the existence of
this image, any computational representation would be
based upon some curve approximation, which remains
the subject of further study, where many possible tech-
niques are available, particularly in the spline literature
[21]. The specific choice of technique will depend on a
good balance between topological considerations and
efficient algorithms for the specific input data. These
additional investigations are beyond the scope of the
present paper, but remain important topics for further
consideration.

Discussion:The value forρ is, of course, estimated. Note
that this is applicable both to surface approximation, as
well as surface reconstruction. When surface definitions
are available, such as the widely-used splines, thenρ can
be found quite accurately via computation of curvature
on C2 surfaces together with standard numerical methods
to estimate minimal point separations, where these values
are fully explained in the companion theory paper [2]. Of
course, there remains some error associated with these nu-
merical computations, but the expectation is that these com-
putations will be much better conditioned and more stable
than approximations of the medial axis.

We note the our development of a full implementation of
this algorithm is not yet complete, as doing so would require
the creation of significantly more code for proper approx-
imation of the boundary. One of the delicate open issues
is the efficient, accurate approximation of normals along a
boundary when only point cloud data is available. This is
discussed further in an expanded version of this paper [1].

6. Discussion of Hypotheses

This section presents an example that shows our reliance
upon theC2 hypothesis of Theorem 3.1. Letx = y2, for
y ∈ [0, 2] be rotated about the x-axis. We note the impor-
tance of our smoothness assumptions to our implementa-

tion. For instance, consider the image shown in the left of
Figure 8. It is defined as a surface of revolution of the curve
y = x3/2. It is a surface with boundary (at the top); note
that artifacts appear near the base during reconstruction, as
shown in the magnification at the right of Figure 8. It is
tempting to speculate that these artifacts appear because the
surface fails to satisfy even mild smoothness assumptions
(namelyC1,1) at the base, although the underlying algorith-
mic causes remain the subject of further investigation.

7. Envelope Bounds and Sampling Density

This section shows typical data of experiments done to
better understand the roles of accurate normals and sam-
pling density, both relative to the original manifold.

7.1. Approximation with Envelopes

Figure 9 shows how the resultant surface approximation
varies with the accuracy of the approximation. The progres-
sion from left to right is of decreasingly close approxima-
tions by the envelope. The suggestion to investigate this re-
lationship further arose from our previously discussed re-
construction with the foot data, where improving the enve-
lope approximations along the boundary resulted in signifi-
cant improvements to the final surface approximation.

7.2. Sampling Density of Knots

The knot surface reconstructions of this subsection are,
also, all of surfaces with boundary. The intent is to create
surfaces based upon the unknot and the trefoil knot. Those
original surfaces were created by drawing each knot as a
curve and then these curves were extended into surfaces
by a linear extrusion which produced no self-intersections.
Each surface is like a ribbon with the corresponding knot
for its two boundary curves.

Figure 10 shows the expected pattern of the re-
construction improving with higher sampling density,
depicted for the unknot. In this unknot surface exam-
ple, its envelope surface was then constructed at vary-
ing radii, λ1 < λ2 < . . . < λ6, increasing from left to
right, while the sampling density of points from each en-
velope was kept constant. On the extreme right of the se-
ries of images, denote the radius of this envelope asλ6.
The value ofλ6 is sufficiently large that there is a per-
ceptible artifact towards the center of this image, where
there appears to be a self-intersection or an undercross-
ing in R3, although none should occur. Likely, this was
caused by having the value ofλ6 exceed the value for
ρ, as given in Theorem 3.1, but more precise numeri-
cal studies are needed to verify this condition. For compari-
son, if one views the images in middle of this sequence, the



Figure 8. Reconstruction Artifacts Observed

Figure 9. Envelope Proximity

smaller values ofλ yield better images of the unknot. Pro-
ceeding to the left-most image, its radius ofλ1 is so small
that the least feature size criterion of the Power Crust al-
gorithm would require a much finer sampling density of
the envelope than the constant density that is being main-
tained. Since the sampling density is no longer sufficient,
holes and other visual artifacts begin to appear in the result-
ing reconstruction. Hence, this study shows the balance re-
quired between sampling density and radius chosen for the
envelope surface.

This unknot study then led to consideration of the more
challenging trefoil knot surface, as a comparison of our en-
velope reconstruction method versus techniques that have
already appeared in the literature. That visual comparison
has already been presented in Figures 1 and 2.

8. Concluding Remarks and Future Work

Our surface reconstruction technique is demonstrated for
C2 manifolds with boundary, where the method is depen-
dant upon definition and implementation of an auxiliary sur-
face, called the envelope. The promising results achieved
here were by an effective expedient. We used the compo-
nent of the medial axis of an envelope surface that is con-
tained in the interior of the envelope as an approximation
to the original manifold. An approximation to this compo-
nent is already produced by the Power Crust algorithm and
the results presented here show this to be a good approxi-
mation in practice.

It can be shown that a compactC2 manifoldM , with
boundary, is equal to the interior component of the medial
axis of theρ-envelope ofM , denoted asEρ(M), for suit-
ably chosen values ofρ. Hence, in principle, the expedi-
ent used here is well-founded, but there remain some is-
sues for further investigation. Namely, the Power Crust nec-
essarily produces an approximation of the medial axis, so,
if there are any deviations of this approximation from the
true medial axis, then no formal topological guarantees can
be given for the examples presented here. This remains the
subject of further investigation, but the results presented
here are promising that more detailed investigation will be
fruitful.

The experiments conducted provide interesting informa-
tion about the role of bounds for the envelope in reconstruct-
ing surfaces with boundary. Furthermore, the images pro-
duced help to visualize the interplay between preserving
topological characteristics and required sampling density.
Further work needs to be done on both these subjects, to-
wards optimal sampling criteria, which is a subject of broad
ongoing interest.
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Figure 10. Unknot
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