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Abstract

For a rich class of composite cubic Bézier curves, an a priori bound exists on the
number of subdivisions to achieve ambient isotopy between the curve and its control
polygon. The authors of that theorem did not present any examples when the original
control polygon is not ambient isotopic to the curve. An example is given here of a
composite cubic Bézier curve that is the unknot (a knot with no crossings), but whose
control polygon is knotted. It is also shown that there is no upper bound on the number
of crossings in the control polygon for an unknotted composite Bézier curve.

There can be substantial topological differences between a curve and its control poly-
gon, as depicted in Figure 1 and explained, below. A knot will be considered to be

Figure 1: Unknot with Knotted Control Polygon
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a closed, non-self-intersecting curve with a specific embedding in R3. When such a
knot is described as a composite Bézier curve2 for analysis or detailed geometrical ma-
nipulation, it would be highly advantageous if most of the calculations and operations
could be done with just the linear segments of the control polygon. One topological
difference is that the control polygon can have self-intersections when the associated
curve does not [2]. However, as the control polygon of any Bézier curve is subdivided,
it converges to the Bézier curve.

Any non-self-intersecting C1 composite Bézier curve with regular parameterisation
will, after sufficiently many subdivisions, have a non-self-intersecting control polygon
[3], so that the curve and its control polygon are homeomorphic3. The options for em-
bedding closed curves in the plane are quite restricted so that homeomorphism is the
crucial equivalence relation between closed planar curves, with the salient distinction
being the presence or absence of self-intersections. However, there are significant dif-
ferences in how closed, non-self-intersecting curves can be embedded within R3, as
formally captured by ambient isotopy (Definition 0.1.) Ambient isotopy is a funda-
mental concept in knot theory [4]. Practical applications of ambient isotopy appear in
geometric modeling, visualization and animation [5].

Definition 0.1. A continuous function H : R3 × [0, 1]→ R3 is an ambient isotopy
between subsets X and Y of R3 if H(·, 0) is the identity, H(X, 1) = Y , and for each
t ∈ [0, 1], H(·, t) is a homeomorphism from R3 onto R3. The sets X and Y are then
said to be ambient isotopic.

Within R3, there exists a rich class of non-self-intersecting, composite, cubic Bézier
curves for which each curve will, after sufficiently many subdivisions, be ambient iso-
topic with its control polygon [6]. This class includes the example created here, which
constructs a non-trivial polygonal knot as the control polygon of a Bézier unknot. Such
examples had not been previously provided in the earlier work [6].

Example 0.1. Denote by c the closed, composite cubic Bézier curve with control points,
P0, . . . P5, respectively listed as:

(-6, -6, 12), (4, 1, -1), (-4, 1, 1), (6, -6, -12), (1, 2, 4), (-1, 2, -4).

Proposition 0.1. Curve c is the unknot but the control polygon of c is a trefoil4.

Proof: Let K denote the control polygon of c. This is a closed, non-self-intersecting
curve embedded in R3. Note that K has two superfluous undercrossings:

[P2, P3] under [P5, P0] and [P2, P3] under [P0, P1].

2For composite Bézier curves, the word ‘knot’ is also used for a ‘junction point’ [1].
3A continuous function f : X → Y is a homeomorphism between X and Y if f is bi-continuous, 1-1

and onto. The sets X and Y are then said to be homeomorphic.
4A trefoil is the knot with three crossings.
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Informally, [P2, P3] can be stretched and pulled beyond P0 to eliminate these two un-
dercrossings, without changing the knot type. Formally, this is the ambient isotopy
of linear extrapolation of [P2, P3] until the x co-ordinate of P2 is sufficiently negative
and the y co-ordiante of P3 is sufficiently negative5. The remaining three crossings are
alternating, as can be verified by linear interpolation, so that K is ambient isotopic to a
piecewise linear trefoil [7].

The vertices of K are the control points for a composite cubic Bézier curve, c. To
show that c is the unknot, it suffices to show that there are no self-intersections in
the projection of c into the plane z = 0. Denote by c̃1 the component created from
projection of the control points P0, P1, P2, P3 and by c̃2 the component created from
projection of the control points P3, P4, P5, P0. Both c̃1 and c̃2 are assumed to be
parameterized over [0, 1]. Let d2 denote the Euclidean distance function in R2. Pub-
lished analyses [2, Example 1.7(e)] show that the curve c̃1 is non-self-intersecting be-
cause d2(P̃1, P̃2) < d2(P̃0, P̃3), where these distance arguments are the projections of
P1, P2, P0, P3, respectively. The curve c̃2 is non-self-intersecting because of its con-
vex control polygon. It remains to show that these components intersect only at their
end points.

Figure 2: Subdivision & Convex Hulls

The subdivided control poly-
gons in the half-plane x ≤
0 is shown with solid black
lines in Figure 2. Subdivid-
ing c̃1 and c̃2 at t = 0.5
gives control points in the
half-plane defined by x ≤ 0
of

c̃1: (−6,−6, ), (−1,−2.5),
(−0.5,−0.75), (0,−0.75);

c̃2: (0, 0), (−1.75, 0),
(−3.5,−2), (−6,−6).

These convex hulls within the
half-plane x ≤ 0 intersect
only at P0, shown in Figure 2.
The proof is completed by using the symmetry about the y-axis.

Highly Knotted Control Polygons: We can now use this configuration to form an
unknot with a control polygon of arbitrary knottedness.

Denote four instances of K knot of Figure 1 as K1, K2, K3, K4. For i = 1, . . . 4, cut
open each Ki at its initial point and then the Ki can be joined in the pinwheel pattern
shown in Figure 3. Two new knots are formed; a polygonal knot with 12 crossings
and a composite Bézier curve of the unknot. This process can be formalized as a
connected sum of knots [4] and generalized for each n ≥ 1 to exhibit a knotted control
polygon with 3n crossings for a Bézier unknot. This lack of an upper bound on the

5This is equivalent to applying a Reidemeister move [7].
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number of crossings in the control polygon leads to radically different embeddings in
R3 compared to the corresponding Bézier unknot.

Figure 3: Connected Sum for the Control Polygon of a Bézier Unknot
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