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Abstract: Ambient isotopic approximations are fundamental for correct rep-
resentation of the embedding of geometric objects in R3, with a detailed geo-
metric construction given here. Using that geometry, an algorithm is presented
for efficient update of these isotopic approximations for dynamic visualization
with a molecular simulation.

1 Approximation and Topology for Visualization

Figure 1(a) depicts a knot5 and Figure 1(b) shows a visually similar protein
model6. prompting two criteria for efficient algorithms for visualization:

(a) (b)

Fig. 1. (a) Complicated Unknot (b) Protein-enzyme complex

– a piecewise linear (PL) approximation that preserves model topology,
– preservation of topology during dynamic changes, such as protein unfolding.

5Image credit: R. Scharein, www.knotplot.com
6Image credit: http://160.114.99.91/astrojan/protein/pictures/parvalb.jpg
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The visual comparison from Figure 1 led to invoking knot theory to provide
the unifying mathematics. This paper presents a curvature-adaptive, topology
preserving approximation for a parametric 1-manifold with the primary result
being Theorem 3. The piecewise linear (PL) approximations presented will

(i) be topologically equivalent to the original manifold,
(ii) minimize the number of linear approximants,
(iii) respect user-specified error bounds for distance & curvature.

While many approximation methods fulfill criteria (ii) and (iii), the stipu-
lation of criterion (i) is of recent interest and the methods here are for a rich
class of curves, extending related results. The topological equivalence chosen for
dynamic molecular visualizations is by ambient isotopy, as this preserves the
embedding of the geometric model over time.

Definition 1. Let X and Y be two subsets of n-dimensional space Rn. An am-
bient isotopy is a continuous function H : Rn × [0, 1] → Rn such that

1. H(·, 0) is the identity function,
2. H(X, 1) = Y , and
3. For each t in [0, 1], H(·, t) is a homeomorphism on Rn.

2 Related Work

Preliminary work by some of these authors and collaborators has appeared: for
the integration of time and topology in animations and simulations [1] and for
isotopic approximations on various classes of spline curves [2–5]. The theory pre-
sented here extends to a broad class of parametric curves that properly includes
splines. While one approximation method could be applied to general parametric
curves [1] the isotopy results within that paper relied upon Bézier geometry.

The proof techniques for isotopy here are a slight variant of the well-known
‘push’ from geometric topology for a 3-manifold [6]. The importance for appli-
cations is the creation of explicit neighborhoods within which the approximant
can be perturbed while remaining ambient isotopic. These can serve as the basis
for determining efficient updates for these isotopic constraints during dynamic
visualizations.

A previous application of these tubular neighborhoods has emphasized vi-
sualizing knots undergoing dynamic changes [7]. Another tubular neighborhood
algorithm [2] for rational spline curves [8] relies upon specialized numerical solu-
tion software, whereas computation with Newton’s method has been exhibited
on Bézier curves [3, 4]. Related treatments to curve approximations are available:
within Hilbert spaces [9], with restrictions to planar curves [10] or specialized to
spline curves [11]. The approach of approximating with respect to curvature is
similar to an approach for ‘aesthetic engineering’ [12].

This terse summary on curve approximation stresses only the most relevant
literature, as any comprehensive survey would be voluminous, with one indica-
tion being that a literature search on curve approximation resulted in 1.4 million
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hits7. The distinguishing feature, here, is the additional insistence of topological
equivalence. This emphasis upon geometric topology is appropriate when a geo-
metric model is present, as for the molecular models discussed, and could prove
complementary to other uses of topology in visualization that depend largely
upon algebraic topology [13, 14].

3 Curvature & Topology for Parametric 1-Manifolds

Each curve considered here is assumed to be a compact 1-manifold, thereby
excluding self-intersections, where stated differentiability assumptions also pre-
clude wild arcs8. Further, each 1-manifold is assumed to have total arc length 1
and is parameterized over the unit9 interval.

Notation: Let c : [0, 1] → R3 be a C3 curve and we denote

µc([a, b]) =
∫ b

a

||c′′(t)||dt,

which will be invoked as the basis for our curvature-adaptive approximation.

Theorem 1. Let c : [0, 1] → R3 be a C3 curve. For each ε > 0, there exists
a natural number n and a partition X = {p1, . . . , pn} ⊂ [0, 1] such that, for
i = 1, . . . , n, p1 = 0, pn = 1; p1 < p2 . . . < pn−1 < pn; and∫ pi+1

pi

‖c′′(z)‖dz = µc([pi, pi+1]) < ε, (1)

there is a set of compact cylinders {Ci}n
i=1, such that each Ci has its axis aligned

with the tangent at c(pi) and has radius ε. Furthermore both the polyline formed
by consecutively connecting the vertices {c(pi) : i = 1, . . . , n} and the curve c lie

in
n⋃

i=1

Ci.

Theorm 1 can be used to create a PL approximation of a curve, but there
are no guarantees given that the approximant is topologically equivalent to the
original curve. Further constraints must be imposed upon the choice of ε to
ensure that the approximant produced is ambient isotopic to the original curve,
as will be developed in the rest of this paper. The proof of Theorem 1 follows.

Proof. We construct one cylinder Ci for each point in the set X. Let Li be
the line containing the vector c′(pi). Consider the plane normal to c′(pi+1). This
plane intersects Li at a point, denoted as q. Define Ci to be the cylinder of radius

7http://scholar.google.com/
8Any C2 compact 1-manifold is tame [2].
9If not of unit length, scale accordingly.
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ε whose axis is the portion of Li connecting pi and q. By Taylor’s Theorem if
t ∈ [pi, pi+1] then

|c(t)− c(pi)− (t− pi)c′(pi)| ≤
∫ t

pi

||c′′(z)||(t− z)dz ≤
∫ pi+1

pi

||c′′(z)||dz < ε.

Hence, c(t) is of distance at most ε from c(pi) + (t − pi)c′(pi). Thus c(t) is at
most ε away from Li, and so c(t) is in the cylinder Ci. The last statement is clear
as each cylinder is convex and the endpoints c(pi), c(pi+1) of an approximating
segment are contained in the cylinder Ci.

If, for each i, Inequality 1 is modified so that µc([pi, pi+1]) = ε, then a
previously published proof [1] can be applied for an asymptotic limit on the
number of segments in the approximation. For ε > 0, denote by N(ε) the number
of cylinders given by the construction in the proof of Theorem 1.

Corollary 1. If c is also C3 such that ||c′′(t)|| > 0 for all t, then

lim
ε→0

√
ε ·N(ε) =

∫ 1

0

√
||c′′(u)||du.

We identify important properties studied in geometric topology and prove
maintenance of those characteristics for the approximant. For the remainder of
the section we will refer to the set X = {p1, . . . , pn} where the pi’s are ordered
as described, above, and the cylinders Ci are constructed as in Theorem 1. We
ensure that the curve is well-behaved within each cylinder through the following
lemmas.

Lemma 1. Let c : [0, 1] → R3 be a C3 curve and r, s ∈ [pi, pi+1], then

||c′(r)− c′(s)|| ≤
√

3ε.

Proof. For t ∈ [0, 1] denote by c′(t)x the x-coordinate for c′(t). We can apply
Taylor’s Theorem to see for r, s ∈ [pi, pi+1],

|c′(r)x − c′(s)x| ≤
∫ s

r

|c′′(u)x|du ≤
∫ s

r

||c′′(u)||du ≤ ε.

The case is similar for the y and z coordinates, and the result follows.

Corollary 2. Let c : [0, 1] → R3 be a C3 space curve, and ε <
√

2/3. Then for
points r, s ∈ [pi, pi+1] the tangential deviation between c′(r) and c′(s) is no more
than π/2.

Proof. Since we are parameterized using arc length, we have ||c′(r)|| = ||c′(s)|| =
1 for any r, s ∈ [pi, pi+1]. Further, by Lemma 1,

||c′(r)− c′(s)|| <
√

3ε.

The Law of Cosines shows the angle between them is arccos(1 − 3
2ε2). When

ε <
√

2
3 , we have arccos(1− 3

2ε2) < π
2 .
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So we can explicitly control the tangential deviation within each cylinder
Ci. The benefit here is that we can use this information to control intersections
within each cylinder.

Lemma 2. Let c : [0, 1] → R3 be a C3 curve and [a, b] ⊂ [0, 1]. Assume all
of the tangent vectors of the subcurve c([a, b]) deviate in angle by no more than
η < π

2 from a particular tangent vector c′(t) for t ∈ [a, b]. If Π is a plane with
normal c′(t) and Π ∩ c([a, b]) 6= ∅, then |c([a, b]) ∩Π| = 1.

Proof. Orient the plane Π so that it is parallel with the xy-plane and c′(t) with
the positive z-axis. In this orientation if c′(r)z = 0 for any r ∈ [a, b] then c′(r) is
parallel to the plane Π and this would be a contradiction as c′(t) is normal to
the plane Π and the angular deviation of tangent vectors is not more than π

2 .
For any s ∈ [a, b] with s 6= t, if c(s) lies on the plane Π then c(s)z = 0 and since
c(t)z = 0 we have, by the Mean Value Theorem, another point r with c′(r)z = 0,
which is a contradiction.

Notation: For the remainder of this paper, let

– c : [0, 1] → R3 denote a C3 curve,
– κ = max ||c′′(z)||, α = min{1, ||c′′(z)||},
– X be a set which satisfies the hypothesis of Theorem 1, and
– For pi, pi+1 ∈ X, let ci = c([pi, pi+1]).

Our next step is to construct sets upon which we can build local isotopies
between the curve and the approximant. In order to do this we will make use of
Taylor’s theorem, as in the following lemma.

Lemma 3. Let γ be chosen such that γ > 0, but γ � (κ/2)(t − pi)2. For
t ∈ (pi, pi+1], let St be the closed ball with center c(pi)+ (t− pi)c′(pi) and radius
rt, with rt = (κ/2)(t− pi)2 + γ. Then, c(t) ∈ int(St).

Proof. By Taylor’s theorem we have

||c(t)− c(pi)− (t− pi)c′(pi)|| ≤
∫ t

pi

||c′′(z)||(t− z)dz

≤ κ[t2 − (1/2)t2 − (tpi − (1/2)p2
i )].

However t2− (1/2)t2− (tpi− (1/2)p2
i ) = (1/2)(t−pi)2. The use of γ permits the

conclusion about containment in the interior.

For each t ∈ (pi, pi+1], define a ‘snowcone’ Kt as the convex hull10 of St and
{pi}, where the use of the colloquial term ‘snowcone’ is meant to suggest the
compact set created, with a planar cross-section shown in Figure 2. The next
lemma shows the relationship between the opening angle of these snowcones11

for different values t.
10For any two sets A and B, their convex hull is defined as the smallest convex set

that contains A ∪B.
11In the United States, a frozen desert having a two dimensional profile similar to

that of Figure 2 is known as a ‘snowcone’.
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Lemma 4. Choose ε ∈ (0, α/(2κ)). Let t ∈ (pi, pi+1], let θt be opening angle at
c(pi) for Kt. Then θt is an increasing function of t and each snowcone Kt, for
t ∈ (pi, pi+1], is contained in the snowcone Kpi+1 .

Proof. Denote by rt = (κ/2)(t− pi)2 the radius of St. Since∫ pi+1

pi

||c′′(z)||dz < ε

we have that α(pi+1 − pi) < ε and since ε < (2α/κ) we have that

(t− pi) ≤ (pi+1 − pi) ≤ ε/α ≤ 2/κ.

Thus, (κ/2)(t − pi) ≤ 1 and (κ/2)(t − pi)2 ≤ (t − pi). Therefore, c(pi) is not
contained in the sphere St. Consider a planar cross section of the snowcone Kt

and within this planar cross section, choose a tangent to St and denote the point
of tangency as v. Denote the angle between c′(pi) and the segment [c(pi), v] by
θt. Denote by z the center of St. Using the triangle defined by z, v, c(pi) one can
conclude that sin θt = rt/(t− pi) = (κ/2)(t− pi). For reference, consider Figure
2. Since rt is finite, θt < π/2. For t, s ∈ [pi, pi+1] with t < s, sin θt < sin θs and
so θt < θs, as θs < π/2.

Fig. 2. Cross section of snowcone Kt

Hence, for t ∈ (pi, pi+1], Kt ⊂ Kpi+1 .

Corollary 3. The snowcone Kpi+1 contains ci.

Proof. First note that c(pi) ∈ Kpi+1 as it is the apex of this snowcone. For each
t ∈ (pi, pi+1], c(t) ∈ Kpi+1 by Lemmas 3 and 4.
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Notation: First, modify the existing notation Kpi+1 to be Ki,i+1, using the
order of these subscripts to express that the snowcone’s apex is at pi and opens
towards pi+1. This is to contrast it with a similar snowcone, denoted as Ki+1,i,
which will have its apex as the point c(pi+1), its axis as the line containing
c′(pi+1) but will open towards pi, as indicated in Figure 3.

Lemma 5. For each i = 1, . . . , n − 1, denote the approximating segment con-
necting the points c(pi) and c(pi+1) by ai,i+1 . For each cylinder Ci, there is a
convex subset of Ci, denoted Vi,i+1, containing ci, such that

Vi,i+1 ∩ Vi+1,i+2 = c(pi+1).

Proof. Define Vi,i+1 = Ki,i+1 ∩Ci ∩Ki+1,i. Since each of the intersecting sets is
convex, it is clear that Vi,i+1 is convex. But then, since both c(pi) and c(pi+1)
are in Vi,i+1, it is clear that ai ⊂ Vi,i+1. From Corollary 3, ci ⊂ Vi,i+1.

Fig. 3. Cross Section for bounding volume Vi,i+1

4 Building the Ambient Isotopy

The results so far only provide local views on c by focusing on each ci indepen-
dently. It is often easy to build an isotopy locally on one portion of a curve, but
considerable subtlety can be required to unify these into an isotopy of the entire
curve. The snowcones were defined for use in an iterative algorithm to establish
an ambient isotopy for all of c.

Outline of Algorithm for Entire Curve: The geometric objective for the
algorithm is to continue to reduce the radius of each cylinder Ci used in defining
the sets Vi,i+1 until the interiors of these Vi,i+1 are pairwise disjoint, that is, for
i 6= j,

int(Vi,i+1) ∩ int(Vj,j+1) = ∅.
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The algorithm begins with a seed value for δ to construct a set X1 such
that for each i = 1, . . . , n, and pi, pi+1 ∈ X1, we have µc([pi, pi+1]) < δ. The
algorithm proceeds by replacing the value of δ by δ/2, so that at each successive
iteration j, the set Xj has the above mentioned containment properties relative
to the current value of δ. The algorithm proceeds until these bounding volumes
are pairwise disjoint in order to form an isotopy of the entire curve. A previ-
ously published termination proof [3] can be easily modified for this snowcone
geometry. Indeed, the more aggressive containment snowcone geometry used
here actually simplifies the previous proof, so that both algorithms terminate
in O(log ∆−1) iterations [3], where ∆ is the minimum separation distance of
the curve. For the curve c, define d : [0, 1] → R to be the distance function
d : (s, t) 7→ ‖c(s) − c(t)‖. Then the minimum separation distance is the min-
imum critical value of d. A useful geometric formulation of this problem is to
find all pairs of distinct points at parametric values s and t of c to satisfy the
equations [15]:

(c(s)− c(t)) · c′(s) = 0 (2)

(c(s)− c(t)) · c′(t) = 0. (3)

Recent approaches to efficiently solve these simultaneous Equations 2 and
3 have appeared [3]. The value of ∆ is then the minimum Euclidean distance
over all pairs (c(s), c(t)) that are solutions to these simultaneous equations. The
role of ∆ as a stopping criterion can be intutitively expressed as measuring the
minimum Euclidean distance between points of c that can be geodesically far
apart. The algorithm restricts the size of the snowcones relative to ∆.

We first build a local homeomorphism on ci and use that as a basis for
constructing an ambient isotopy over all of c. For each point w ∈ ci, let Nw

denote the normal plane to ci at w. Choose ε, in accordance with Corollary 2 to
ensure that tangents on ci deviate by less than π/2. Define the function

hi : ci → ai,i+1

by

hi(w) is the single point in Nw ∩ ai,i+1.

Theorem 2. The function hi is a homeomorphism that fixes both c(pi) and
c(pi+1).

Proof. We consider the intersection of each Nw and ai,i+1.
First, suppose that ai,i+1 is a subset of Nw, requiring that both end points

of ai,i+1 were in Nw. But these end points are also points of ci, which would be
a contradiction to Lemma 2. If w is either endpoint of ci, then it is also a point
of ai,i+1, but then Lemma 2 provides that this endpoint is the only element of
the Nw ∩ ai,i+1.

So, suppose w is not an endpoint, then c(pi) cannot also be in Nw, by
Lemma 2, and, similarly, c(pi+1) cannot be in Nw. But, then, since π/2 is an
upper bound on the tangents on ci, it is clear that c(pi) and c(pi+1) must be on
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opposite sides of Nw. So, ai,i+1 and Nw cannot be disjoint. But, then, Nw and
ai,i+1 intersect in a single point, since a plane and a line can intersect only in
the line itself or in a single point.

Then hi is a well-defined function on each ci, where continuity is obvious.
Moreover, note that hi keeps the end points of ci fixed. That hi is onto follows
since the endpoints of ai,i+1 remain fixed and the image of hi is a connected
subset of ai,i+1. That hi is 1-1 follows, since ai,i+1 is within ε of ci, with ε chosen
to be less than 1/(2κ) (with κ chosen to be the maximum curvature) so, the line
segments given by [w1, h(w1)] and [w2, h(w2)] do not intersect.

Now we are set to define a local isotopy within the bounding volume Vi,i+1.
But first we need to recall some easily proven properties of convex sets of Rn.
Let A denote a non-empty, compact, convex subset of Rn, for some positive
integer n.

Lemma 6. For each point p ∈ int(A) and b ∈ ∂A, the ray going from p to b
only intersects ∂A at b (See Figure 4(a).)

(a) (b)

Fig. 4. (a) Rays outward. (b) Variant of a push.

Lemma 7. Let A be a compact convex subset of R2 with non-empty interior
and fix p ∈ int(A). For each boundary point b ∈ ∂A, denote by [p, b] the line
segment from p to b. Then A =

⋃
b∈∂A[p, b].

Many of the arguments of the proof of Theorem 2 can be adapted to build
the ambient isotopy of c. The construction relies strongly on having a compact,
convex set of support, as illustrated in Figure 4(b). The previous attention to
convexity of Vi,i+1 was directed towards this construction.

Corollary 4. There is an ambient isotopy of ci, with compact support Vi,i+1

that takes each point of ci to h(ci).
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Proof. A value of ε > 0 should be chosen so that ε <
√

2/3 to fulfill the condi-
tions of Corollary 2 so that each hi is a homeomorphism. Simultaneously choose,
ε < α/(2κ) to satisfy the hypotheses of Lemma 4 while also constraining ε ≤ δ to
ensure that the interiors of the bounding volumes Vi,i+1 and Vj,j+1 are disjoint,
with δ being the output of the iterative algorithm outlined at the beginning
of this section. It should be clear that bounding volumes Vi,i+1 and Vi+1,i+2

intersect only at the point c(pi+1).
The proof is a variant of a ‘push’ [6], where point p and q are in the interior of

a non-empty, convex, planar set. As illustrated in Figure 4(b), each point v on a
line segment between p and a boundary point b is mapped by linear interpolation
onto the segment [q, b], as p is mapped onto q, and then Lemmas 6 and 7 are
applied to build the ambient isotopy from the homeomorphism of Theorem 2.

Theorem 3. There is an ambient isotopy of c onto its PL approximant a and
this isotopy has compact support

⋃
i Vi,i+1.

Proof. The snowcone construction leaves bounding volumes Vi,i+1 and Vi+1,i+2

intersecting only at the point pi+1, which is fixed under the local isotopy, so a
‘pasting lemma’ [4] can be applied to complete the proof.

5 Conclusions and Future Work

The primary result of this work is a curvature-adpative, ambient isotopic approx-
imation for a 1-manifold, inclusive of distance and tangency error bounds on the
approximant. The bounding volumes also constrain many isotopic movements of
the approximant curve.

The image of Figure 1(a) is the first frame of an animation showing that
curve deforming under the application of energy described by Gaussian func-
tionals, with guarantees that the embedded topology is preserved during this
process. Similarly, the long-term focus here is to produce dynamic visualiza-
tion of complex molecules undergoing simulated deformations under energy and
chemical changes that also preserve the embedded topology. The essential first
step is to produce a topology-preserving approximation of the static model. A
specific approximated geometry model might be able to have multiple ambi-
ent isotopic perturbations within its bounding volume. However, if successive
movements have the approximated geometry approaching the boundaries of the
bounding volumes, new bounding volumes need to be computed. As long as the
curve remains C2 the existence of these new bounding volumes is known from
classical differential topology [16].

However, those existence theorems typically do not provide explicit bound-
ing geometry and they are not necessarily adaptive in the sense shown here.
The value provided here is the detailed geometric constructions can be used to
create algorithms that will allow for efficient updates of the geometric bounding
neighborhoods as fundamental for dynamic visualization. The algorithm out-
lined in the second paragraph of Section 4 can be refined further, dependant
upon the specific models being considered, for even more aggressive bounding
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volumes, when geometric alternatives to the snowcones used here might be useful
on specific data.

In Figure 1(b), there was considerable empty space around the geometric
model being unfolded, but Figure 5 depicts a very dense configuration12.

Fig. 5. Dense molecular configuration.

The control for isotopies can become quite delicate for molecular models.
In Figure 5, the close geometric proximity and associated small bounding vol-
umes will require updates after even small movements. This model has been the
subject of consideration for dynamic visualization of molecular simulation [1]
and is the current test case for algorithmic performance. The geometry in Fig-
ure 5 is also multi-dimensional, but the geometric topology used has well-known
generalizations beyond dimension one. Guidance for extension to higher dimen-
sions may be gained by considering other papers on topological approximation
of 2-manifolds [17–20]. A particularly relevant comparison is to recent results fo-
cusing on a sufficiently dense set of sample points [19] to give both error bounds
and topological guarantees.
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