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a b s t r a c t

The art of animation relies upon modeling objects that change over time. A sequence
of static images is displayed to produce an illusion of motion. Even for simple cases, a
careful analysis exposes that formal topological guarantees are often lacking. This absence
of rigor can result in subtle, but significant, topological flaws. A new modeling approach is
proposed to integrate topological rigor with a continuous model of time. Examples will be
given for Bézier curves, while indicating extensions to a richer class of parametric curves
and surfaces. Applications to scientific visualization for molecular modeling are discussed.
Prototype animations are available for viewing over the web.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction: Analysis of topological flaws in time models

The animation paradigm described in the abstract was established by human animators and persists in contemporary
computer animation, where the individual static images are known as frames and distinct geometric models are created for
each frame. Unwanted artifacts are possible [31].

For example, in creating a protein-enzyme simulation, the actual dynamics of the underlying physical system may
naturally avoid topological changes (such as fracture of a twisting DNA strand), but the underlying algorithms are not
designed to ensure the global topology of the perturbing model. As the objects can be geometrically complex, it becomes
impractical and unreliable for humans to attempt to visually detect any unwanted artifacts. The dominant approach today
is to post-process the geometry in each frame by testing for self-intersections as opposed to modeling the continuous
motion [30].

A careful analysis of this approach exposes two main difficulties:

(1) Any self-intersection between frames would remain undetected.
(2) Algorithms for detecting self-intersections are compute intensive.

The first difficulty is inherent in the approach of only inspecting static images. That approach tacitly assumes that
the time differences between each frame are sufficiently small to preclude self-intersections between frames. However,
such self-intersections can occur and disappear instantaneously, as illustrated in Fig. 1. The drawings of Fig. 1 have a
simplified schematic of an instantaneous, pernicious topological change. The topology of the unknot (on the left) changes
instantaneously upon the appearance of the self-intersection shown at the top of the middle image. Subsequently, further
topological change results in a trefoil knot.
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Fig. 1. Self-intersection precedes knot change.

The topological emphasis presented here will prevent even these instantaneous temporal artifacts. This new
computational approach to modeling time for animation and dynamic visualization relies upon Lemma 3.1 proven here
to permit the synthesis of several results into a new methodology.

2. Related work

The proposed approach focuses upon topological equivalence over the time variable used in simulations. Preventing
unwanted new self-intersections is important to avoid temporal aliasing in animation [21]. Progress in computational
topology invariants has advanced greatly through research on biological applications [4,5,17,18]. The role of knot
characteristics has been prominent for molecular modeling [47]. The classical tubular neighborhoods are fundamental for
isotopy [26] equivalence, as invoked in a contemporary algorithm for a piecewise liner (PL) ambient isotopic approximant
to a parametric curve [32]. Surface approximations based upon ε-nets and Delaunay triangulations have also appeared [14].

A seminal work on the integration of graphics for simulation [48] emphasized efficient algorithms for culling, scaling and
clipping of geometry when no topological changes were expected. A focus on polylines or polyhedra [16,20,22,25] or other
specialized shapes [3,40] has beenmotivated by performance concerns. Visualization and graphics ofmassive data sets have
been studied [3,15,23–25,28] as well as applications for the life sciences [29,44].

The current authors have contributed to the emphasis upon algorithms for isotopic equivalence between a parametric
curve and its piecewise liner (PL) approximant [33,34,36,37]. Algorithms for preservation of topological form during
perturbation of vertices and control points, for polyhedra and splines, respectively, have given practically computable limits
on the distance these points can be perturbed [7–9].

3. Isotopy for Bézier curves

A curve will be the image of a continuous function c : [0, 1] → R3. These curves are necessarily compact. These curves
can be open or closed and have self-intersections. Since the focus will be on ambient isotopic equivalence, that definition is
given.

Definition 3.1. Let X and Y be two subspaces of Rn. A continuous function

H : Rn
× [0, 1] → Rn

is an ambient isotopy between X and Y if H satisfies the following:

(1) H(·, 0) is the identity,
(2) H(X, 1) = Y , and
(3) ∀t ∈ [0, 1],H(·, t) is a homeomorphism from Rn onto Rn.

The sets X and Y are then said to be ambient isotopic.

3.1. Curves for graphics

For the curves used in graphics, animation and visualization, it is often assumed that they are non-self-intersecting.Many
of the curves used are splines, and the special case of a Bézier curve [42] is defined, below.

Definition 3.2. A Bézier curve is defined by b : [0, 1] → Rn for n = 1, 2, . . . as

b(u) =

n∑
i=0

Bi,n(u)Pi,

where

Bi,n(u) =
n!

i!(n − i)!
ui(1 − u)n−i,

where the Bi,n are the classical n-th degree Bernstein polynomials and the Pi are known as the control points.
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Fig. 2. Topological change by perturbed control points.

A curve of Definition 3.2 is known as single segment curve but such single curves are joined into composite curves,
with common usage being to also refer to these resultant curves as Bézeier curves and the points in Rn where the single
segments Bézier curves are joined are called junction points [19]. While any single segment Bézier is C∞, when considering
a composite Bézier curve, the degree of differentiability is determined by differentiability at the junction points.

Even if the original curve is non-self-intersecting, when the geometry changes dynamically during animation or
visualization, it is possible to introduce new self-intersections. This phenomenon is depicted for a planar Bézier curve in
Fig. 2, where the transition from left to right is achieved by perturbation of the control points. The left image has no self-
intersections. However, continuous movement of the control points can cause the curve to instantaneously pass through a
cusp [42], while further movement of these control points can cause self-intersection, as shown in the right image.

3.2. Perturbation limits and isotopy

Previouswork [8] presented tractable computational limits on the perturbation of control points to preclude introduction
of self-intersections for Bézier curves and surfaces. For ease of exposition, the summary presented here will only consider
the case of a single segment Bézier curve, denoted as b. This captures the essence and the additional subtleties necessary to
extend the results here to composite rational Bézier curves follow from the previous work [8].

Presenting that previous work relies upon the definition of the finite sequence q defined on the control points of b as

q = {P1 − P0, . . . , Pn − Pn−1}.

Let conv(q) denote the convex hull ofq and let d∗(q) = dE(0, conv(q)), where 0 is the origin and dE denotes the Euclidean
distance between a point and a polyhedron. The first result used here is the following:

Proposition 3.1 ([8]). A sufficient condition for non-self-intersection of the Bézier curve b is that d∗(q) > 0.

While this gives a tractable criterion for determining non-self-intersection of a static Bézier curve, it was also generalized
to limit how far the control points could be perturbed without introducing self-intersections. For each i = 0, 1, . . . , n, let
δPi represent the perturbation of each control point Pi and let δq be given by

δq = {δP0, δP1, . . . , δPn}.

Let ‖δq‖ = max{‖δPi‖ : i = 0, 1, . . . , n}, with the Euclidean norm on each δPi. The perturbation result used here is the
following:

Proposition 3.2 ([8]). If d∗(q) > 0 and ‖δq‖ < d∗(q), then the perturbed curve remains non-self-intersecting.

While this perturbation result only treats a single perturbed curve, it should be clear that if the control points are linearly
perturbed to their new positions, then any Bézier curve defined by intermediate positions of those linearly perturbing
points is also non-self-intersecting. Linear perturbations of control points are used frequently in graphics, animation and
visualization. It is easy to see that each linear perturbation of the control points is a homotopy, which can be extended to an
isotopy under the following conditions.

Lemma 3.1. Let c be a non-self-intersecting C2 parametric curve,

c : [0, 1] → Rn.

Let F be a homotopy of c given by F : [0, 1] × [0, 1] → Rn such that

F(s, t) = c(s),

and such that each homotopic image of c is non-self-intersecting, then there exists an ambient isotopy, H : Rn
× [0, 1] → Rn,

such that, if s ∈ [0, 1], then

H(F(s; 0); t) = F(s; t).

Proof. The C2 hypothesis and the compactness of c ensure that c has a PL approximation [32], specifically c is not a wild
arc [27]. Since the domain of c is compact and each homotopic image is non-self-intersecting, then ∀t ∈ [0, 1] the map
given by H(F(s; 0); t) = F(s; t) is a homeomorphism. It should also be clear that the union of all the images given by
H(F(s; 0); t) = F(s; t) over all t ∈ [0, 1] can be contained within a compact polyhedron. Then a standard argument can be
made for the existence of an ambient isotopy with compact support [7]. �
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3.3. Animating a curve

Proposition 3.2 and Lemma 3.1 suffice to exhibit families of Bézier curves that are ambient isotopic within the
indicated perturbation limits. If the animation requires perturbation limits that exceed these sufficient conditions, then the
perturbation can be refined into smaller steps and each one analyzed separately. So, further attention here will be restricted
to a given time interval [0, T ] corresponding to a perturbation less than d∗(q).

For any t ∈ [0, T ], the partial perturbation at time t will be ambient isotopic to b, where both b and its perturbation
are Bézier curves. The paradigms for animation and dynamic visualization still require a choice of finitely many times
{t0, t1, . . . , tm}, (with t0 = 0 and each tj ∈ [0, T ]) so displaying these m + 1 images at a sufficiently high frequency will be
perceived as motion. For any such tj, the corresponding Bézier curve will be ambient isotopic to the original curve.

However, graphics subsystems typically rely upon piecewise linear (PL) approximations of curves in order to render
them. It is well known that PL approximation need not preserve the isotopy class of the original curve [6]. Hence, it remains
to determine how ambient isotopic PL approximations can be integrated into this scheme. The first step, of course, is to find
an appropriate approximation of b.

Previous work [9] has given sufficient conditions for topological complexes of surface patches to be ambient isotopic
under perturbations of control points, but this work did not provide ambient isotopic PL approximations, which is presented
for a class of curves in the next section.

4. Tubular neighborhoods: Theory & practice

The techniques used in this paper are standard within differential topology regarding tubular neighborhoods and the
extension of isotopies to ambient isotopies [26,27,43]. Much of the following material can be seen as applications of that
theory. However, as is common in the transition of theoretical mathematics to practical algorithms, the level of abstraction
changes. This section explicates details of the transition of abstract existence results into efficient, constructive algorithms.
The crucial computation is the radius of a tubular neighborhood. This exposition will proceed with construction of a tubular
neighborhood about a curve, but the construction is similar for higher order manifolds [1,2,6,41,45,46].

The curves are assumed to be C2. Two published algorithms for creating ambient isotopic PL approximation of parametric
curves are considered. Both techniques [32,39] create a tubular neighborhood of the curve as a containment for the PL
approximation. Similar techniques are being used for both new theoretical findings and improved visualization of knots [12,
13].

Let r denote the radius of this tubular neighborhood. Computation of this radius depends upon two other values. The
first is the maximum value of curvature, denoted as κM . This maximum exists because of the continuity and compactness
properties of the curves considered. Algorithms for this computation are standard [42]. The other value is known as the
minimum separation distance (MSD), which is defined by taking the minimum over all pairs of points whose normals are
collinear. Algorithms for computing MSD are available [32–34] and the continuity and compactness criteria ensure that
MSD > 0, except for the trivial case of a line segment. Then, the radius r is defined as

r = min(1/κM , (1/2)MSD). (1)

The paper [32] uses this definition of r for creation of ambient isotopic PL approximations for a rich class of spline curves
that properly includes Bézier curves. For a curve c, its PL approximation is defined by a finite sequence of points in [0, 1]

0 = t0 < t1 < · · · < tk = 1,

to give the PL approximation, pl(c) formed by the polyline formed over the set of vertices, V , ordered as

V = {c(t0), c(t1), . . . , c(tk)}. (2)

Other PL approximations mentioned later create sets similar to V . For the isotopy constructed between c and pl(c), all
the vertices of V are fixed points.

5. Perturbing PL approximations of Bézier curves

Let b denote a non-self-intersecting Bézier curve, such that d∗(q) > 0 and ‖δq‖ < d∗(q). Compute r of Eq. (1) for b and
choose ε > 0 (to avoid the trivial case of a line segment) such that r > ε > 0 and create a PL approximation of b to fit inside
the tubular neighborhood of radius r , where the vertices are chosen as in V of Eq. (2).

Combining the previous discussions from Section 3.2 and 4, yields the following result.

Proposition 5.1. If b is a C3 Bézier curve, with d∗(q) > 0 and ‖δq‖ < d∗(q), then these perturbations of b are ambient isotopic
and there exists a PL ambient isotopic approximation of b within the tubular neighborhood of radius r.
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Now consider the times {t0, t1, . . . , tm} indicated in Section 3.3. The original curve b occurs at time t0. Let bj denote
the perturbed Bézier curve at time tj, with b = b0. In order to create an ambient isotopic approximation of each bj

by use of the preceding results, one would need to verify the hypothesis that each bj was either C2 or C3, depending
upon the approximation technique used. This would permit an arbitrarily close ambient isotopic PL approximation to
each bj. However, the previous discussion regarding Fig. 2 indicates that perturbation of the control points can change
the differentiability class. An obvious option would be constraints to preserve the needed differentiability, but this raises
questions in differential topology that are beyond the scope of the present paper.

However, Lemma 3.1 provides an alternative in absence of the verification of the needed differentiability. Namely, let
pl(b0) denote any PL approximation of b0. Published perturbation limits to prevent self-intersections of PL curves [7] rely
on defining a parameter ν as the minimum of all distances between disjoint pairs of vertices and segments in the PL curve.
Once pl(b0) is known, the determination of its ν is a trivial computation. Proposition 5.1 can be now rephrased as follows

Proposition 5.2. If b is a C3 Bézier curve, with d∗(q) > 0 and ‖δq‖ < d∗(q), and if b has a PL ambient isotopic approximation
with ν < ‖δq‖, then these perturbations of b are ambient isotopic and each has an ambient isotopic PL approximation given as
the corresponding perturbation of pl(b0).

The crucial theoretical observation is that attending first to the preservation of topology leads to guarantees for any
time chosen within the interval. Only after that were specific time values chosen to obtain approximations. This avoids the
problem of first discretizing the time, only to find that one could have missed a crucial topological change (or even worse,
to be oblivious to that pernicious error). The importance of this to molecular simulations [38] is discussed in Section 7.
It is noted that similar perturbation bounds are known for higher dimensional spline manifold geometry [8,9], leading to
immediate generalizations of the work presented in this section.

6. Creating V and general parametric curves

Previous methods for isotopic approximation of curves [32] did not explicate the creation of the set V of approximating
points of Eq. (2) and were restricted to NURBS curves. This section provides an explicit method for creating V — moreover,
the method is adaptive to curvature, meaning that fewer approximating points are chosen in segments of low curvature
versus than for high curvature. Also, the family of curves extends beyond NURBS curves. A similar result for approximating
surfaces was done concurrently [14], but the method here produces new quantitative bounds based upon a more direct
proof for the simpler case of curves.

In Section 5, perturbations bounds to maintain isotopy were available directly on the original control points of the Bézier
curves. However, in the more general parametric geometry context, the convenience of control points will not typically be
available. But, for many practical applications, once the PL approximation is available, one only needs to know perturbation
bounds on those vertices, but these are known [7] and have already been used in practical animation algorithms [21].

The approximation techniques of this section are adaptive to curvature so that the number of approximating segments is
asymptotically optimal as the bound on the approximation error goes to zero. Since performance of the graphics operations
is optimized by limiting the number of segments to be displayed, these refinements are of practical interest.

An adaptive, piecewise linear approximation of the curve c is given relative to its bending energy, which is denoted as
β(c) and defined here as

β(c) =

∫ 1

0
‖c ′′(s)‖ ds. (3)

Throughout this section, the curve c will be assumed to be non-self-intersecting.

The techniques presented here not only provide rigorous error bounds on the Hausdorff distance between c and its PL
approximant, but also establish bounds upon tangency differences between the approximant and c.

Fix ε > 0. For any t ∈ [0, 1], it follows from Taylor’s Theorem, with the Cauchy form for the remainder [11], that h(t)
can be chosen such that∫ t+h(t)

t
‖c ′′(u)‖ du = ε. (4)

A family of cylinders will be inductively defined to be represented by subintervals of [0, 1] such that the following holds:

(i) Each point on the curve will lie in the interior of at least one cylinder.
(ii) Each point in [0, 1] is contained in no more than two of the subintervals.
(iii) Within each cylinder the error bound between the curve and its approximation will be no more than ε.
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Notation. Let N(ε, c) be the number of cylinders inductively defined with error tolerance ε on curve c. Let t0 = 0. Then
define t1 ≤ 1 be such that∫ t1

t0
‖c ′′(z)‖dz = ε.

Here, t1 plays the role of the notation t + h(t) previously used in Eq. (4). For i ≥ 1, we similarly define ti+1 inductively, so
that for ti < ti+1, each integral

∫ ti+1
ti

|c ′′(z)|dz = ε and

N(ε,c)−1∑
i=0

∫ ti+1

ti
|c ′′(z)|dz ≤

∫ 1

0
|c ′′(z)|dz < ∞,

so this procedure will terminate.
A minor subtlety arises in choosing tn+1. This is easily resolved. Observe that

∫ 1
tn

|c ′′(z)|dz ≤ ε and first assume that c is
closed, so that tn+1 can be chosen to be 1. If c is not closed, then the last cylinder should be taken to extend slightly past the
end point.

The PL approximation of c is then given by the polyline joining the points

{c(t0), c(t1), . . . , c(tn), c(tn+1)}

in the order given by their indices.
There is an asymptotic upper bound for the number of cylinders used in terms of the error bound and the global curvature:

Proposition 6.1. For the family described there are at most O(
∫

‖c ′′(u)‖du/ε) many cylinders in the family.

Proof. Observe that
N(ε,c)−1∑

i=0

∫ ti+1

ti
‖c ′′(u)‖du =

∫ 1

0
‖c ′′(u)‖du

by condition (ii). Also, by construction each summand is at most ε, so

N(ε, c) ≤ (1/ε)
∫ 1

0
‖c ′′(u)‖du. �

However, this is a coarse upper bound, due to the assumption here that h is just less than 1, when h will often be much
smaller. As a quick demonstration of this, assume that c has constant second derivative. From the analysis above, there exists
an error bound of h

∫ t+h
t ‖c ′′(u)‖du. Suppose ‖c ′′(u)‖ is constant, with this constant denoted as K . If K = 0 then this is the

trivial case of a straight line which can be contained within one cylinder. If K 6= 0 then there exists an error bound h2
· K .

Evidently, the choice can be h =
√

ε/K so that N(ε, c) · h = 1 and N(ε, c)
√

ε =
√
K . This discussion is a proof of the

following lemma.

Lemma 6.1. If ‖c ′′(t)‖ ≡ K is constant, then
√

ε · N(ε, c) = O(1)
√
K.

This is suggestive of a sharper bound for N(ε, c).

Lemma 6.2. If c is C3 and if there exists α > 0 such that ‖c ′′(t)‖ ≥ α > 0 for all t , then

lim
ε→0

√
ε · N(ε, c) = O(1)

∫ 1

0

√
‖c ′′(u)‖du.

Proof. Let γ > 0 be an error estimate. Let M3 = max{‖c ′′′(u)‖} and define ν = (1/
√
2)

∫ 1
0

√
‖c ′′(u)‖du. Choose a mesh

η > 0 of an even subdivision {ti} of the interval in order to approximate ν by Riemann sums and ε > 0, so that the lengths
of the cylinders lie within the η-intervals. Specifically choose η1 such that the Riemann sum∣∣∣∣∣∣

η−1
1∑
i=0

η1

√
‖c ′′(ti)‖(1 +

η1M3
α

)
√
2

− ν

∣∣∣∣∣∣ ≤
γ

2
,

and choose η < min{η1, (α/M3)}. Also choose

ε <
1
4
min

{
γ 2η2, 2αη2

(
1 −

ηM3

α

)}
.
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For t ∈ [ti, ti + η] then ‖c ′′(t)‖ ∈ [‖c ′′(ti)‖ − ηM3, ‖c ′′(ti)‖ + ηM3], so

‖c ′′(ti)‖
(
1 −

ηM3

α

)
≤ ‖c ′′(t)‖ ≤ ‖c ′′(ti)‖

(
1 +

ηM3

α

)
.

This gives upper and lower estimates for the length of our cylinders within each η–interval. That is, choose h such that∫ t+h

t
‖c ′′(u)‖(t + h − u)du = ε.

Then ∫ t+h

t
‖c ′′(u)‖(t + h − u)du ≤ ‖c ′′(ti)‖(1 + (ηM3/α))(h2/2).

Setting this equal to ε gives that

‖c ′′(ti)‖(1 + (ηM3/α))(h2/2)) = ε,

provided h =
√
2ε/

√
‖c ′′(ti)‖(1 + ηM3/α). The other estimate works in a similar fashion giving the bounds

hmin :=

√
2ε√

‖c ′′(ti)‖(1 +
ηM3
α

)

≤ h ≤

√
2ε√

‖c ′′(ti)‖(1 −
ηM3
α

)

=: hmax.

Observe that η < α/M3, so that (1 − (ηM3/α)) > 0. Further, note that

ε <
η2(α − ηM3))

2
,

ensuring that hmax < η, so indeed there is at least one cylinder per η-interval.
Now let Ni(ε, c) be the number of cylinders contained completely within [ti, ti + η] and N(ε, c) be the total number of

cylinders produced by the algorithm.
Then since the cylinders may not fill up each η-interval, by counting

∑η−1

i=1 Ni(ε, c) there are an additional η−1 many
cylinders to consider. In the worst case,

√
εN(ε, c) ≤

η−1∑
i=0

√
εNi(ε, c) +

√
ε

η
.

Use the minimum length of a cylinder to conclude that

hminNi(ε, c) ≤ η ⇒
√

εNi(ε, c) ≤ η
√

‖c ′′(ti)‖(1 + (ηM3/α))/
√
2.

This gives that

√
εN(ε, c) ≤

η−1∑
i=0

√
εNi(ε, c) +

√
ε

η
≤

η−1∑
i=0

η

√
‖c ′′(ti)‖(1 +

ηM3
α

)
√
2

+

√
ε

η
.

Since ε < γ 2η2/4, it follows that
√

ε/η ≤ γ /2. Then the following holds:

√
εN(ε, c) ≤

η−1∑
i=1

√
εNi(ε, c) +

√
ε

η
≤ ν +

γ

2
+

γ

2
= ν + γ .

It remains to get a lower estimate for N(ε, c). The relation
∑

Ni(ε, c) ≤ N(ε, c) holds by virtue that a tiny piece of each
interval may have been missed. Now make sure that more cylinders can be inserted, that is, there are at least hmaxNi(ε, c)
space taken up in each η-interval. Then, it is true that η − hmaxNi(ε, c) ≤ hmin, otherwise Ni(ε, c) is not counted correctly.
So this gives

η −

√
2ε√

‖c ′′(ti)‖(1 −
ηM3
α

)

Ni(ε, c) ≤

√
2ε√

‖c ′′(ti)‖(1 +
ηM3
α

)

or, equivalently,

η

√
‖c ′′(ti)‖(1 −

ηM3
α

)

2
−

√
ε

√√√√1 −
ηM3
α

1 +
ηM3
α

≤
√

εNi(ε, c).
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Since
√

(1 − x)/(1 + x) ≤ 1 for x > 0 and
√

ε/η ≤ γ /2 and
√

ε

η

√
1 − (ηM3/α)

1 + (ηM3/α)
≤ (γ /2).

Thus −γ /2 ≤ −(
√

ε/η)
√

(1 − (ηM3/α))/(1 + (ηM3/α)) and so summing yields

ν − γ ≤ ν −
γ

2
−

γ

2
≤

η

√
‖c ′′(ti)‖(1 −

ηM3
α

)

2
−

√
ε

η

√√√√1 −
ηM3
α

1 +
ηM3
α

≤

η−1∑
i=0

√
εNi(ε, c) ≤

√
εN(ε, c).

For the appropriate choices of η and ε, then ν − γ ≤
√

εN(ε, c) ≤ ν + γ which gives the limit. �

If one continues to reduce the radii of the cylinders to be contained within the tubular neighborhood previously defined,
then the result will be an adaptive, ambient isotopic PL approximation, requiring only technical modifications of arguments
already published [32].

7. Visualization of molecular simulations with rich geometry

The techniques presented were motivated by applications for dynamic visualization in high performance computing
(HPC) environments. A topologically complex geometric model is created to model the resting state of a macro-molecule.
For chemical simulations of macro-molecules, the HPC algorithms will produce voluminous numerical data describing how
the molecule twists and writhes under local chemical and kinetic changes. These are reflected in changed co-ordinates of
the geometric model, namely perturbations of the kind discussed above. To produce a scientifically valid visualization, it
is crucial that topological artifacts are not introduced by the visual approximations. Most past attention has focused only
upon geometric approximations in each frame appropriate for efficient display. The proposed approach provides bounds for
comparison with sufficient conditions to ensure that topological integrity is preserved.

Prototype animations have been implemented on both an open and closed curve. They are available for review over
the web [35]. As previously mentioned in Section 6, ambient isotopy during animation of the PL approximations can be
maintained in terms of the vertices of the PL approximation [7].

The sufficiency results in some conservatism — there may be perturbations beyond these limits that will still preserve
ambient isotopy. However, that is very appropriate to this application. Namely, it now becomes easy to determine when
the geometric perturbations approach an indicated limit, merely by a scalar comparison of the distance moved to the
perturbation limit. This, alone, may be very valuable to the domain scientists, as this may indicate circumstances where the
simulation should be investigated for critical changes. For instance, nearing this limitmight signal a time just prior to fracture
in a twisting DNA strand [10]. Furthermore, since this comparison is only between scalars, theremay be overall performance
gains relative to testing each frame for geometric self-intersections, because of the higher performance complexity of those
geometric algorithms.

8. Conclusions and future work

Ambient isotopy is used as a crucial tool for modeling geometric changes at every instant within a time interval. Then
ambient isotopic approximations can be created at any selected time within that interval. This reverses the standard
animation approach of discretizing the time interval, creating an object at each time instant and then verifying the
topology by checking whether new self-intersections may have occurred. Notably, if the time discretization had been
badly chosen, then important topological changes could have been missed when the topological checking follows after the
time discretization. The prior attention to topology eliminates that problem. Experimental opportunities remain to resolve
pragmatic error bounds and HPC performance trade-offs.
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