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Abstract. The unresolved subtleties of floating point computations in
geometric modeling become considerably more difficult in animations
and scientific visualizations. Some emerging solutions based upon topo-
logical considerations for curves will be presented. A novel geometric
seeding algorithm for Newton’s method was used in experiments to de-
termine feasible support for these visualization applications.

1 Computing the Pipe Surface Radius

Parametric curves have been shown to have a particular neighborhood whose
boundary is non-self-intersecting [9]. It has also been shown that specified move-
ments of the curve within this neighborhood preserve the topology of the curve
[12, 13], as is desired in visualization. This neighborhood is defined by a single
value, which is the radius of a pipe surface, where that radius depends on curva-
ture and the minimum length over those line segments which are normal to the
curve at both endpoints of the line segment [9]. Since computation of curvature
is a well-treated problem, the focus of this paper is efficient and accurate floating
point techniques to compute the other dependency for that radius.

Definition 1. For a non-self-intersecting, parametric curve c, where

c : [0, 1] → R
3,

and for distinct1 values s, t ∈ [0, 1], then the line segment [c(s), c(t)] is doubly
normal if it is normal to c at both of the points c(s) and c(t).

To avoid unnecessary complications with computing derivatives, only curves
with regular parameterization [7] are considered.

Definition 2. The global separation is the minimum over the lengths of all
doubly normal segments. (For compact curves, this minimum has been shown in
be positive [10].)

1 If the curve is closed, the s and t should be distinct values in [0, 1).
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Fig. 1. Many doubly normal segments exist on this curve

An example cubic B-splines curve is given in Figure 1, with

1. control points: (0.0 0.0 0.0) (-1.0 1.0 0.0) (4.5 5.5 2.0) (5.0 -1.0 8.5)
(-1.5 2.5 -4.5) (4.5 6.0 8.5) (3.5 -3.5 0.0) (0.0 0.0 0.0), and

2. knot vector: {0 0 0 0 0.2 0.4 0.6 0.8 1 1 1 1}

For this curve, there exist many doubly normal segments, as shown in Figure 1.
The problem is how to efficiently find all these doubly normal segments, and
then find the pair which represents the global separation distance, denoted as σ.
A pair of distinct points at parametric values s and t on a curve will be endpoints
of a doubly normal segment if they satisfy the two equations [9] for s, t ∈ [0, 1] :

[c(s) − c(t)] · c′(s) = 0 (1)

[c(s) − c(t)] · c′(t) = 0. (2)

In principle, the system given by Equations 1 and 2 could be solved alge-
braically by writing them in their power basis form, but this approach results
in well-known algorithmic difficulties [14]. Hence, alternative techniques will be
presented. For the software infrastructure available to these authors, it was con-
venient to convert the B-spline curve into a composite Bézier curve by the usual
technique of increasing the multiplicity of each interior knot to 3. This produces
5 subcurves (depicted in Figure 2 by differing line fonts), with control points:

– (0 0 0) (-1 1 0) (1.75 3.25 1) (3.21 3.29 2.58),
– (3.20 3.29 2.58) (4.67 3.33 4.17) (4.83 1.17 6.33) (3.83 0.67 5.25),
– (3.83 0.67 5.25) (2.83 0.17 4.17) (0.67 1.33 -0.17) (0.58 2.5 -0.17),
– (0.58 2.5 -0.17) (0.5 3.67 -0.17) (2.5 4.83 4.17) (3.25 3.04 4.21),
– (3.25 3.04 4.21) (4 1.25 4.25) (3.5 -3.5 0) (0 0 0).
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Fig. 2. Newton’s method

Newton’s method for two variables [11] was applied to Equations 1 and 2. The
numerical experiments reported on prototype code suggest that this approach
could be sufficiently rapid to support scientific visualization. These experiments
were performed on a 64-bit AMD processor with Red Hat Linux Fedora Core 2
and OpenGL with double buffering. As always, the integration with a specific
graphics subsystem is highly dependent upon the underlying architecture, and
incorporation of this code on any platform would require further development
and experimentation.

As is typical, the ‘art’ required for the successful use of Newton’s method is
highly dependent upon the determination of reasonable initial estimates, within
the following standard formulation

[
sn+1
tn+1

]
=

[
sn

tn

]
− J−1(sn, tn)

[
f(sn, tn)
g(sn, tn)

]
, n = 0, 1, ... (3)

until |J−1(sn, tn)[f(sn, tn) g(sn, tn)]T | is less than some ε > 0, where J−1(sn, tn)
is the inverse Jacobian matrix.

A viable approach to this art is presented and verified on an illustrative ex-
ample. The general idea is to take finitely many points on each subcurve and
consider all line segments between each pair of points as a candidate for being
doubly normal. Many of these segments can be excluded from further consider-
ation by an easy culling technique based upon a lack of normality at one end
point or the other.

Let 〈c(s), c(t)〉 denote the vector of unit length, formed by taking the vector
between c(s) and c(t) and dividing that vector by its norm. Let c′(s) and c′(t)
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denote the unit tangent vectors at points c(s) and c(t), respectively. Let ε1 and
ε2 be positive. The following modifications of Equations 1 and 2 are used

〈c(s), c(t)〉 · c′(s) < ε1, (4)

and

〈c(s), c(t)〉 · c′(t) < ε2. (5)

If the result of the preceding comparisons2 are false, then this segment is rejected.
Otherwise, it is sufficiently close to being doubly normal to serve as an initial
estimate for Newton’s method.

These candidate double normal points are shown graphically in Figure 2 with
line segments connecting the pairs of candidate points from Bézier segments.
When Bézier segments are shown with no connecting line segment, that means
that no candidate doubly normal points were found. When only one connecting
line segment is depicted, that indicates that Newton’s method did not converge
for those particular points. When two pairs of connecting line segments are
shown, that indicates that Newton’s method did converge, and the resulting pair
of minimum double normal points is one of the two line segments from each pair.
Typically, convergence with ε = 0.0001 occurred after 3 or 4 iterations, where
similar behavior was corroborated in independently implemented code [2]. Note
that Figure 2 depicts the same curve as in Figure 1, but now the curve is rotated
about the y-axis to get a better view of doubly normal points, with σ illustrated
in the zoomed-in section of Figure 2.

Table 1 summarizes experimental work completed. Tests 1 - 3 report on a
naive, direct approach. This relies purely upon the limiting notion that suffi-
ciently many approximation pairs will produce a list that contains a reasonable
estimate for σ. This produces the reliable estimates shown in both Tests 1 and
2, but at prohibitively slow performance for visualization applications. Further-
more, Test 3 shows that further coarsening on the partition results in both poor
estimates for σ and unacceptable performance. Alternatively, Test 4 shows that
Newton’s method produces a reliable estimate of σ with acceptable performance
over a very coarse partition 3. It should also be noted that the timing for the
Newton’s implementation is a very rough estimate and that the prototype code
is not fully optimized, so further efficiencies could be expected. Even with these
disclaimers, the time reported is encouraging for scientific visualization purposes.

2 Guaranteeing a Lower Bound

The estimate of σ produced by Newton’s Method can be done quickly, but it
could easily be an overestimate of σ. In this section we show how to efficiently
2 The possibility of choosing different values for ε1 and ε2 is left as a user-option and

is fully permissible within the theory presented. In practice, these values may often
be chosen to be the same.

3 As a verification of the Newton’s code implemented, the value of σ for this experi-
mental curve was corroborated by an independently created code [2].
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Table 1. Estimating σ

Test # Method Partition Size, n Time(s) σ

1 Direct 10,000 85 0.44268
2 Direct 2,000 6 0.44268
3 Direct 1,000 2 0.91921
4 Newton 10 .0004 0.44268

determine a guaranteed approximation to the length of the shortest ε-nearly
doubly normal line segment, a quantity we call σ(ε). (This is defined precisely
below.) Note that σ(ε) ≤ σ(0) = σ, and that in order for this to be a guaran-
teed approximation of σ, one would have to establish a relationship between σ
and σ(ε). However, if s is a good multiplicative approximation to σ(ε) in the
sense that α−1 ≤ s/σ(ε) ≤ α (for some small α > 1), then certainly α−1s is a
guaranteed lower bound on σ.

2.1 Partitioning by Taylor’s Theorem

Given ε > 0, the algorithm presented in this section depends on a subroutine
Pipe(δ) that returns a PL approximation to c. Specifically, Pipe is called with
a parameter δ and computes a PL approximation of c for which

– the Hausdorff distance between c and the PL approximation is bounded
above by δ/2, and

– the PL edges “ε-approximate” the tangents of c associated with this edge.

To do this for the curve c, the subroutine Pipe will determine a uniform
partition of the parametric interval [0, 1] by the increasing sequence of points

0 = s0, s1, . . . , s� = 1.

Then a PL approximation to the c is created by connecting the interpolant points

c(s0), c(s1), . . . c(s�).

Both conditions can be met by invoking Taylor’s Theorem [6]. Taylor’s The-
orem is stated as follows. For f : R → R and n > 0, suppose that f (n+1) exists
for each x in a non-empty open interval I ⊂ R containing a. For each x �= a in
I, there exists tx strictly between a and x such that

f(x) = f(a) + f ′(a)(x − a) + . . . +
fn(a)

n!
(x − a)n + rn(x),

where

rn(x) =
f (n+1)(tx)
(n + 1)!

(x − a)n+1
.

Note that this statement of Taylor’s Theorem is for the univariate case into R,
whereas the present application is to the map c : [0, 1] → R

3, a univariate func-
tion into R

3. However, the x, y and z components can be treated independently
as functions into R.
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Definition 3. For any compact set K ⊂ [0, 1] and any continuous function
f : K → R

3, and any t ∈ K, denote the components of f as fx(t), fy(t) and
fz(t). Then the max norm of f(t) is denoted as ‖f(t)‖max, with

‖f(t)‖max = max{fx(t), fy(t), fz(t)}.

Condition 1. PL Approximation within δ/2: This part discusses the cre-
ation of a PL approximant of c that is within δ/2 of c.

Since only C2 functions defined on the compact set [0, 1] are considered, there
is a maximum positive value for ‖c′(t)‖max, denoted as M0. Recall that c′(t)
is non-zero. Then for any t ∈ [t0, t1], (when |t1 − t0| is sufficiently small), a
straightforward application of Taylor’s Theorem to the x component of c(t),
denoted as cx(t) would give,

cx(t) = cx(t0) + Ex(t∗)

for some t∗ ∈ [t0, t], where

Ex(t∗) = (t − t0)c′x(t∗),

with Ex(t∗) playing the role of r1(x) above. Clearly, this can be done in each
component. Then, since the final intent is to use the Euclidean norm on the
vector-valued c, denoted as ‖c(t) − c(t0)‖, an elementary algebraic argument
shows that the component-wise inequalities can be combined to yield

‖c(t) − c(t0)‖ ≤ (t1 − t0)
√

3M0.

Observe then that if |si+1 − si| ≤ δ/(2
√

3M0) for each i, the curve c and this PL
approximation are nowhere more than δ/2 apart, as desired.

Note that this analysis only applies to a single curve, and recall that a curve
c can be composed of many Bézier sub-curves. Suppose there are j many sub-
curves. Then, the Taylor’s theorem analysis must be applied to each of the
j-many sub-curves.

Condition 2. Guaranteeing Good Local Tangent Approximations: This
is analogous to the preceding argument. Suppose the curvature is positive some-
where. If not, the curve is the trivial case of a straight line. Let M1 denote
the maximum value of ‖c′′(t)‖max, and let μ0 denote the minimum value of
‖c′(t)‖max. A similar application of Taylor’s Theorem yields,

‖c′(t) − c′(t0)‖ ≤ |t1 − t0|‖c′′(t∗)‖ ≤ (t1 − t0)
√

3M1.

Let θt denote the angle between c′(t0) and c′(t). Then,

|sin(θt)| ≤ ‖c′(t) − c′(t0)‖
‖c′(t)‖ .
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For a sufficiently small value of ε chosen to be greater than 0, the arcsine function
is monotonically increasing on [−ε/4, ε/4]. Therefore, to show that sin(θt) <
sin(ε/4) over that interval, it is sufficient to have |θt| < ε/4, yielding

|sin(θt)| ≤ ‖c′(t) − c′(t0)‖
‖c′(t)‖ ≤ (t1 − t0)

M1

μ0
.

Observe then that if |si+1−si| ≤ sin(ε/4)μ0/M1 for each i, the angular deviation
along the curve will be bounded as desired.

The subroutine Pipe(δ), then, returns the PL approximation obtained by
uniformly dividing the interval so that each

|si+1 − si| ≤ min
(

sin(ε/4)μ0

M1
,

δ

2
√

3M0

)
.

2.2 Lower Bound for σ(ε)

The introduction, here, of the terminology “ε-nearly doubly normal” is similar
to the conditions previously set forth for the seeds for Newton’s Method, as
expressed in Equations 1 and 2 in Section 1.

Let c(sσ) and c(tσ) be two distinct points of c such that d(c(sσ), c(tσ)) = σ.
Consider those circumstances, where for sufficiently small positive ε there exist
s̃σ, t̃σ ∈ [0, 1] such that the the normal planes P1 and P2 at c(s̃σ) and c(t̃σ),
respectively, are distinct and intersect in a line near to the segment connecting
c(sσ) and c(tσ) such that ν is a point on P1 ∩ P2 which minimizes the sum
d(c(s̃σ), ν) + d(c(t̃σ), ν) and such that the angle φ formed between the segments
connecting c(s̃σ) to ν and ν to c(t̃σ) is between π − ε and π. An illustration is
shown in Figure 3, where a = d(c(s̃σ), ν) and b = d(c(t̃σ), ν) denote the lengths
along the indicated line segments.

Any two points c(s) and c(t) are said to be ε-nearly doubly normal if

(c(s) − c(t)) · c′(s) = 0 & (c(s) − c(t)) · c′(t) = 0,

or
π − ε < φ < π.

The triangle inequality gives d(c(s̃σ), c(t̃σ)) ≤ a + b, and that a + b ≤ σ. The
algorithm described will estimate the global separation distance using approx-
imations of d(c(s̃σ), c(t̃σ)). Since d(c(s̃σ), c(t̃σ)) ≤ σ, the estimate produced,
denoted as σ(ε) (defined immediately, below) will also be shown be no more
than σ. The value σ(ε) (See Figure 4) is defined over any two ε-nearly normal
points c(t), c(s) with t �= s,

σ(ε) = min{c(t),c(s)}{d(c(t), c(s)).}

The transition to providing an estimate of the more conservative value σ(ε)
rather than trying to directly approximate σ is motivated by the following ex-
ample. Let α be a planar C∞ curve containing an arc of the unit circle with
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Fig. 3. The points c(s̃σ) and c(t̃σ) are ε-nearly doubly normal

Fig. 4. The points c(s) and c(t) on the curve segments inside each cylinder are ε-nearly
doubly normal, and D is the distance between the PL segments that approximates the
curve segments

arc-length strictly less than π, but where α has its minimum separation dis-
tance being much greater than 2 and found elsewhere on the curve. For any
algorithm that attempts to approximate σ by focusing upon pairs of points
that were nearly normal within some fixed tolerance, there would always be
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Global Separation Distance Estimate Algorithm

Input: A spline curve c & ε.
0. Initialize δ = 1 and ω for upper precision bound.
1. Initialize A(ε) = 0.
2. Apply Pipe(δ) to create a PL approximation.
3. Find pw-distances, d(ei, ej)

with points p, q that realize d(ei, ej).
4. If p and q are ε-nearly doubly normal

retain d(ei, ej) for further consideration,
Else discard.
Let D = min(d(ei, ej)) over the remaining points.

5. If D ≥ 4δ
A(ε) = D − 2δ

Else δ = δ/2, and Go to Step 1.
Output: A(ε) = estimate for global separation distance.

Fig. 5. General algorithm for estimating the global separation distance

some input curve like α which would return some value near 2, since this arc-
length can be made arbitrarily close to π.

The value σ(ε) is now accepted as a good estimate of σ, and the focus shifts
to approximating σ(ε), recalling that σ(ε) ≤ σ. Then, the algorithm below in
Figure 5 will return an approximation A(ε) of σ(ε), with the following two guar-
antees:

– A(ε) ≤ σ(ε) ≤ σ, and
– A(ε) > (σ(ε))/2.

Recall that the previous Taylor analyses guarantees that the result of Pipe(δ)
satisfies the following three conditions:

– the length of each cylinder is strictly less than δ/2,
– the radius of each cylinder is strictly less than δ/2, and
– the angular deviation between tangents on the curve segments in each cylin-

der is strictly less than ε/4.

The value for δ is initialized to 1. (It can be assumed that the curve has been
normalized so that it lies in a sphere of radius 1 (Note that this also makes
σ(ε) < 1 for all ε > 0, which is invoked later).) The resultant estimate A(ε) is
then tested for validity (See algorithm in Figure 5), and failure results in halving
the value of δ, repeating the iterations until a valid value is obtained. In this
way, the overall algorithm is logarithmic in 1/σ(ε).
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2.3 Termination and Satisfactory Value

A termination, let Ď be defined as the distance between two PL segments that
approximate the curve segments in which σ(ε) is actually realized. Note that
D ≤ Ď ≤ σ(ε)+ δ, since the radius of the cylinders shown in Figure 4 is at most
δ/2, as given previously by Taylor’s analysis.

The algorithm will terminate when 2δ < σ(ε). Several applications of the
triangle inequality in Figure 4 show that D ≥ σ(ε)−2δ, or equivalently D+2δ ≥
σ(ε), yielding

D

σ(ε)
≥ D

D + 2δ
=

1

1 +
2δ

D

≥ 1

1 +
2δ

4δ

= 2/3.

Hence, D ≥ (2/3)σ(ε) and D ≤ σ(ε) ≤ σ, as desired.
The global separation distance algorithm in Figure 5 assumes the existence

of a geometric distance predicate d(ei, ej) between two line segments, ei and ej ,
which returns:

– the distance d(ei, ej) between the two line segments, and
– the points p and q on ei and ej , respectively, where that distance is realized.

2.4 Asymptotic Time Bound

The time taken to approximate the global separation distance by this algorithm
is quadratic in the bounds derived earlier for the Taylor’s analysis. The final
bound σ(ε) is computed within an a priori upper bound on the total number of
subdivisions required as is standard practice [8]. As the algorithm is guaranteed
to terminate when δ < σ(ε)/2 and δ is halved during each iteration, no more than
O(log σ(ε)−1) calls to Pipe are invoked. In the worst case, checking validity for a
given PL approximation produced by Pipe takes quadratic time in the number
of edges. The total time is thus no more than

O

(
log(1/σ(ε))max{ (

M0

δ
)2, (

M1

μ0
)2 }

)
.

2.5 Example Analysis

For the curve already used, the values for the indicated parameters, above, were
computed using the Maple computer algebra system as

– M0 = 14.9,
– μ0 = 3.4,
– M1 = 21.9.

Then an easy analysis shows that the number of subintervals generated for
each sub-curve is 2048, which is consistent with the empirical findings in Ta-
ble 1, where approximately 2000 sampled points per sub-curve produced an ac-
ceptable approximation. However, this algorithm for σ(ε) provides the additional
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information that σ(ε) is a lower estimate and is truly close in the precisely defined
sense given in Section 2.3. Of course, the input numerical parameters between
the two algorithms would cause slight variances, but the agreement within this
order of magnitude comparison is of interest.

2.6 Open Issues for Future Work

Within the Taylor’s analysis performed, a well-defined lower estimate is estab-
lished. Neither of the two algorithms presented (based upon Newton’s Method
or Taylor’s Theorem) can effectively preclude output of a value that might be
generated due purely to local properties of the curve. In practice, though, this
is not quite as problematic as it may first appear. Recall that the purpose in
estimating σ was to find the global factor that contributed to determining the
radius of the neighborhood around the curve, while the local factor was in terms
of curvature. A minimization is taken over those two factors to determine the
radius. So, if either of the algorithms presented here returns a minimum value
that is reflective of local properties, then this may suggest that the curvature
is the determining factor for the radius. In those cases where curvature is the
determining factor, then one need not even estimate σ, but these authors know
of no a priori way to discriminate these cases, in order to avoid unnecessary com-
putations. Resolving this issue remains beyond the scope of the present article
but it is of interest for future investigation, both

– experimentally, with the algorithms discussed on more examples, and
– theoretically, by examination of adaptive skeletal structures, such as the me-

dial axis [1], but also inclusive of more recent alternatives [3, 4, 5].

Extensions to higher dimensional geometric elements appear to be possible, but
remain the subject of future work.

3 Experimental Observations

The curves here were assumed to be C2. While this is sufficient for Newton’s
method, it is clearly not necessary to have the curve be C2 globally . Clearly,
Newton’s method is local, so it it will be sufficient to have the C2 condition locally
within neighborhoods of the seeds. This is shown in Figure 6. This composite
cubic Bézier curve has a point of non-differentiability at the top, where the
three segments are shown in differing line fonts. Yet Newton’s method easily
and quickly estimates σ as 1.52, using only 10 partitioning points per sub-curve.
This value of 1.52 was verified by the direct method discussed in Section 1. In
Figure 6, two line segments are shown, with the thinner font indicating the seed
and the thicker font denoting the converged value from Newton’s method.

This composite Bézier curve has three segments and its control points are

– (0, 0.5, 0), (0.75, -1, 0), (0.83, -1.67, 0), (0.72, -2.11, 0),
– (0.72, -2.11, 0), (0.5, -3, 0), (-0.5, -3, 0),
– (-0.72, -2.11, 0), (0.83, -1.67, 0), (0.75, -1, 0), (0, 0.5, 0).
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Fig. 6. A composite Bézier curve with a non-differentiable point

Fig. 7. A Bézier curve with a cusp

When the bound on the angular deviation of Condition 2 of Subsection 2.1
is ε = 0.1 (as done Subsection 2.5), the Taylor’s analysis yields a value of 
 = 10,
indicating 2� = 1024 partition points, far in excess of the 10 used here for
Newton’s method.

Of course, care must still be exercised in using Newton’s method, as shown
in Figure 7. Here there is a cusp at the top and the control polygon is shown.
Using a very fine sampling relative to Inequalities 4 and 5, results in accepting
a seed that is far into the cusp. Under Newton’s method such a seed converges
to an estimate of zero for σ. For the particular curve σ does equal zero, but the
curve shown could be merely a subset of a much larger closed curve having a
non-zero value for σ, meaning that this zero estimate would be inappropriate.
Note that the algorithm for σ(ε) would specifically detect this difficulty by its
check on the magnitude of the derivatives, thereby identifying this unbounded
derivative and terminating the algorithm. Similar checks should also be incor-
porated into any practical code for Newton’s method in this application. This
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example provides further motivation for studying the trade-offs regarding local
and global properties, as mentioned in Subsection 2.6.

4 Conclusion

Newton’s method in two variables, when implemented with some novel geometric
seeding techniques, provides an approach that is promising for preservation of
topological characteristics during scientific visualization. Experiments and an
alternative theoretical analysis, based upon Taylor’s Theorem, are presented.
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