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Abstract In computer graphics and scientific visualization, B-splines are common
geometric representations. A typical display method is to render a piecewise linear
(PL) approximation that lies within a prescribed tolerance of the curve. In dynamic
applications it is necessary to perturb specified points on the displayed curve. The
distance between the perturbed PL structure and the perturbed curve it represents
can change significantly, possibly changing the underlying topology and introducing
unwanted artifacts to the display. We give a strategy to perturb the curve smoothly
and keep track of the error introduced by perturbations. This allows us to refine
the PL curve when appropriate and avoid spurious topological changes. This work
is motivated by applications to visualization of Big Data from simulations on high
performance computing architectures.

1 Introduction

In geometric modeling B-splines are frequently used to model complex geomet-
ric objects [5]. The spline models are smooth structures but PL approximations are
typically used to render the spline. Aeronautical, automotive and chemical simu-
lations rely on topological algorithms to provide mathematically correct visualiza-
tion. These topological algorithms typically enforce that the display curve (i.e. the
PL structure) will preserve crucial topological characteristics [3, 14]. A sufficiently
refined PL model will preserve topological characteristics of the initial static model.
But as points on the PL model are perturbed over the course of the simulation, the
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PL model may diverge significantly from the smooth model that it represents. This
may introduce topological artifacts to the display, resulting in a flawed image that
could mislead domain scientists.

Our formal analysis is motivated by graphics experiments, which are summa-
rized in Experiment 1 (Section 3). We observed that the PL approximation used
for graphics could be perturbed for more time steps, while still preserving ambient
isotopic equivalence than might be expected from previously published bounds [8].
This data-specific a posteriori analysis led us to question whether we could develop
rigorous, predictive methods for the permissible number of time steps. A method
based upon second centered differences is developed for that predictive capability
to support efficient frame generation, where this new method is motivated by Ex-
periment 1, with a formal analysis in Example 4.

Many perturbation strategies are possible, but in dynamic visualization, retaining
differentiability over time is often desirable, so our predictive method is presented
in the context of a representative differentiable perturbation strategy. However, the
formal analysis is quite general, and other perturbation strategies could easily be
integrated by a user interested in other applications. Our exposition first uses a
non-differentiable strategy to introduce some central concepts within this simpli-
fied context, but the ensuing differentiable strategy is then used in the rest of the
development. Our distinctive contributions are analyses of the amount of error in-
troduced by each perturbation. This error can be monitored and the PL model can
be refined as necessary to avoid unwanted topological changes. For ease of nota-
tion the investigation below is performed on Bézier curves, however the analysis is
identical for general B-spline curves [5]. The motivating graphics experiments are
summarized in Section 3 and a representative analysis is presented as Example 4 in
Section 7.

2 Background, Motivation and Notation

In this section we introduce some fundamental definitions and notation.

2.1 Curves and control polygons

Definition 1. A degree d Bézier curve with control points X = {q0, · · · ,qd} is given
by

c(t) =
d

∑
i=0

(
d
i

)
(i− t)d−iqi

where the PL curve connecting q0, · · · ,qd is called the control polygon of c.

A subdivision algorithm operates on X to generate two PL curves, each having d+1
vertices, denoted, respectively as XL and XR, as shown in Figure 1. The union XL∪XR
is also a control polygon for c but lies closer to c than the original control polygon.
This process can be repeated to obtain a PL graphical approximation that is within
a prescribed distance, εd , of the curve c.

Definition 2. Given the polygon generated by X = {q0, · · · ,qd}, the second centered
difference of a given control point qi is defined as
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Fig. 1 Subdivision produces refined PL approximation.

∆2qi = qi−1−2qi +qi+1.

We define ∆2q0 =∆2qd = 0. The maximal second centered difference of the polygon
generated by X is given by

‖∆2X‖∞ = max
0≤i≤d

‖∆2qi‖.

Given a degree d curve with control points X = {q0, · · · ,qd}, after α uniform sub-
divisions the maximal distance between the control polygon and the curve is given
by [15] (

1
2

)2α

‖∆2X‖∞N∞(d).

Here N∞(d) =
dd/2ebd/2c

2d
. Note that this distance is actually attained [15]. So

subdividing α times guarantees that the PL structure is within the specified tolerance
for display, εd , where

α =

⌈
−1

2
log2

(
εd

‖∆2X‖∞N∞(d)

)⌉

2.2 Equivalence relation

The traditional measure of topological equivalence is homeomorphism. Homeomor-
phic equivalence does not capture the embedding of a curve within R3, for example,
all simple closed curves are homeomorphic even though there can be fundamentally
different embeddings.

We use the stronger equivalence of ambient isotopy to also preserve embedding
of c in R3. Different knot types are not ambient isotopic.

Definition 3. Two subspaces, X and Y , of Rn are said to be ambient isotopic if there
exists a continuous function H : Rn× [0,1]−→ Rn such that

1. H(·,0) is the identity on Rn,
2. H(X ,1) = Y , and
3. ∀t ∈ [0,1],H(·, t) is a homeomorphism.



4 Hugh P. Cassidy, Thomas J. Peters, Horea Ilies, and Kirk E. Jordan

2.3 Related Work

Molecular simulations are run on high performance computing (HPC) architectures,
often generating petabytes of data, initiating a typical ‘Big Data’ problem. This
data output is too voluminous for standard numerical analytic techniques and dy-
namic visualization has become a common zero-th order analysis. The supportive
dynamic visualization techniques are well-established [12, 13] and will not be ad-
dressed further. The vitally important and novel support from this work is to provide
rigorously proven numerical assurances that the frames being viewed have appro-
priate approximation in order to avoid topological artifacts in the images that could
prove misleading to the domain scientists [9, 4]. To establish context for this work, a
brief overview will be given of the three primary facets of supportive mathematics,
geometric models and molecular simulations. The emphasis here is upon the new
mathematics to meet the new Big Data challenges posed by the recent prevalence of
these petabytes of simulation output, where this emerging mathematics is develop-
ing a blend of theory and experimentation.
At the highest level of viewing this work, there are so many tools available for
molecular visualization, that it suffices to provide two broad summary portals
[12, 13]. Often protein data is of interest, which appears publicly in an international
resource [2]. The indicated resources do not directly provide geometric models of
the molecules visualized – only images are produced.
The molecular simulation research [16, 21, 19, 20, 18] closely aligns with the work
presented here, with [21] being of particular interest because of its use of splines to
model molecules, as also assumed here. Alternate geometric representations have
been considered [10, 11, 17] for molecules, but the choice of splines here is offered
as a very broad, fundamental representation, which could be examined for adapta-
tion to these alternate representations. The more contemporary Big Data issues had
not yet appeared when this earlier work had already been completed.
The emphasis here upon geometric representations echoes much work in computer-
aided geometric design [5]. In particular, this dynamic molecular visualization has
been synergistically pursued with an emerging virtual reality (VR) engineering de-
sign laboratory [7]. A fascinating common use is of 1-dimensional geometry to
model the molecule writhing proteins and design features [6], where the latter ap-
plication is integrated with a constraint solver.

Motivating Applications The mathematics proven here was motivated by de-
sign of dynamic visualization for molecular simulations in HPC. As a zero-th order
analysis, a dynamic visualization is synchronized with the ongoing simulation. The
graphics at each frame are displayed by PL approximations, raising the possibility
that an image could show an intersection on a writhing molecule where none occurs
on the more accurate spline model. The isotopic analysis presented is designed to
integrate the necessary numerical accuracy with sufficient performance for dynamic
visualization. Subdivision is chosen for the PL approximation, but the analysis pre-
sented here could easily be adapted to other PL approximation techniques, such as
PL interpolation through selected points on the curve. Proteins are typical objects of
interest, modeled as spline curves. Public data bases [2] provide spatial co-ordinates
for interpolation to create a spline model. However, there can easily be hundreds
of thousands of such co-ordinates, so that interpolation by a single segment spline
would be also be on the order of hundreds of thousands — typically prohibitive for
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interactive graphics, where much lower degree is preferred (often as low as degree
3, but rarely higher than degree 8). Sufficiently accurate, low degree models can
be created by the composite curves [5] used here. Since these geometric molecular
models are not readily available in the public resources [2, 12, 13] prototype soft-
ware is also being developed to provide those models, but reports on those tools will
appear elsewhere.
The presented mathematical analysis has guided our algorithmic design so that we
are now confident that we can use splines of sufficiently low degree, while main-
taining desired topological characteristics. It remains to integrate these topology
preserving techniques into the supporting dynamic visualizations discussed. That
full experimental work is beyond the scope of the present paper and remains as
subject for future publications.

3 Graphics Efficiency Experiment

The efficient use of PL approximations in dynamic visualizations has previously
appeared [8], as a way to ensure correct graphics topology during animation, as
previously presented relative to isotopic equivalence. That previous strategy [8]will
now be briefly summarized, where this work adds the additional perspective of prac-
tical limits on the number of frames where this aggressive strategy can be invoked.
As perspective on the extreme data and performance demands of this environment,
it is instructive to note the order of 30 - 60 frames per second to synchronize dy-
namic visualization with a simulation producing peta-bytes of output.

During simulation, the molecule moves as reflected by movement of a spline.
Each frame will use PL approximation. Here are two graphics display options to
consider:
Option 1: At each time step, perturb the spline and create a new PL approximation
for display.
Option 2: Create a PL approximation of the spline at some initial time step. Con-
tinue to perturb this PL approximation until it is no longer sufficiently accurate for
graphics display.

Clearly, Option 2 can eliminate the approximation algorithm at some time steps.
The previous work [8] provided existence theorems for maintaining isotopic equiv-
alence during continued perturbation of these PL approximations. This work refines
[8] by now providing specific numerical analyses to show exactly how many sub-
sequent frames can invoke this aggressive strategy, before it becomes necessary to
create a new PL approximation to ensure ongoing topological fidelity between the
spline and its graphics approximation.

A representative graphics experiment will be summarized to show implications
of Option 2. A sufficient2 perturbation bound [8, Proposition 5.2] to preserve am-
bient isotopy is (1/2)ν , with ν defined as the minimal distance between points and
edges of a PL curve [1]. With the control points here, we note that (1/2)ν = 1/2. We
will show, later, that this upper bound, while sufficient to preserve ambient isotopy,
leaves open the possibility of more aggressive perturbation strategies.

2 There is an obvious typographical error [8, Proposition 5.2].



6 Hugh P. Cassidy, Thomas J. Peters, Horea Ilies, and Kirk E. Jordan

Experiment 1 Consider the non-self intersecting C1 composite cubic Bézier curve
in R2, as depicted on the left hand side of Figure 2. The following points together
with their reflection through the line y = 3 form the control points:

(0,6),(1,5),(2,4.5),(3,5.25),(4,6),(5,7),(6,8),(7,9),(9,10),(11,11),(13,12),(15,13),
(17,13.35),(19,13.7),(21,13),(22,12),(23,11),(24,10),(24.5,8),(25,6),(25,4),(25,3).

The control polygon is green with red control points, the underlying curve is black.
Perturbing pu and pv over ten time steps introduces a self intersection to the PL
structure that is not present in the underlying spline curve, as illustrated on the
right hand side of Figure 2. For brevity of presentation, the example of Figure 2
presents the graphics of the original and perturbed Bézier curves to show that both
are non-self-intersecting, which can be rigorously verified [1]. We return to this
example for a detailed analysis in Section 6.3.

Fig. 2 Spurious self-intersection in PL structure.

We note that the previous bound with of (1/2)ν = 1/2 would have guaranteed
that the first 5 time steps were permissible. When these visual experiments showed
that topological fidelity could be preserved until the 10th step, we pursued a deeper
analysis to explicate identification of this longer preservation of topology.

4 Notation for perturbation analysis

We now define the notation required for the perturbation analysis.
We shall examine n time steps denoted {t1, · · · , tn}, t0 denotes the time at initial-

ization.
We assume that we are given a refined control polygon so that it is within εd of the

represented curve. Note if α subdivisions are required then, from the original set of
control points {q0, . . . ,qd}, there are generated w control points where w = 2α d+1.
Denote the subdivided, but unperturbed, control polygon by

X0 = {p0, p1, · · · , pw}.
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Let Xi denote the perturbed control polygon at time ti. Assume we are supplied with
a (w+1)×n perturbation matrix, Γ , where each row contains perturbation vectors
for a corresponding control point and each column contains the perturbation vectors
for all control points at the corresponding time step, i.e.

Γ =


t1 t2 . . . tn

p0 γ0,1 γ0,2 . . . γ0,n
p1 γ1,1 γ1,2 . . . γ1,n
...

...
...

. . .
...

pw γw,1 γw,2 . . . γw,n


where γi, j denotes the perturbation vector applied to pi at time t j (may be the zero
vector). Let δ j pi denote the coordinates of the point that originated at pi at t j, i.e.

δ j pi = pi +
j

∑
k=1

γi,k.

5 Non-differentiable Perturbations

In cases where maintaining differentiability of the curve is not required, we may
simply perturb each point by the prescribed vector. At t0 we are given X0 and Γ as
described above. At each ti we can calculate Xi from Γ and Xi−1.

Fig. 3 Perturbation over a single time step.

Example 1.

Given the points X0 = {p0, p1, p2, p3} and the perturbation matrix,

Γ =

 0 0
γ1,1 γ1,2
0 0

γ3,1 γ3,2


as depicted in Figure 3. We can calculate
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X1 = {δ1 p0,δ1 p1,δ1 p2,δ1 p3}= {p0, p1 + γ1,1, p2, p3 + γ3,1}, and
X2 = {δ2 p0,δ2 p1,δ2 p2,δ2 p3}= {p0, p1 + γ1,1 + γ1,2, p2, p3 + γ3,1 + γ3,2}.

5.1 Perturbing a single point

First we consider perturbing a single point over a single time step. At initialization
we have

X0 = {p0, · · · , p j, · · · , pw}.
Note that

‖∆2X0‖∞N∞(d)≤ εd

Let p j be the point being perturbed. At time t1 the point p j is perturbed to p j + γ j,1
and all other points remain in their original positions.

X1 = {p0, · · · ,δ1 p j, · · · , pw}= {p0, · · · , p j + γ j,1, · · · , pw}

The only second differences affected are ∆2(p j−1),∆2(p j) and ∆2(p j+1).

‖∆2X1‖∞ = max{‖∆2X0‖∞,‖∆2(δ1 p j−1)‖,‖∆2(δ1 p j)‖,‖∆2(δ1 p j+1)‖}

where
∆2(δ1 p j−1) = p j−2− p j−1 + p j + γ j,1 = ∆2(p j−1)+ γ j,1,

∆2(δ1 p j) = ∆2(p j)−2γ j,1, and
∆2(δ1 p j+1) = ∆2(p j+1)+ γ j,1.

This approach extends easily to n time steps

‖∆2Xn‖∞ = max{‖∆2X0‖∞,‖∆2(δn p j−1)‖,‖∆2(δn p j)‖,‖∆2(δn p j+1)‖}

where ∆2(δn p j−1) = ∆2(p j−1) + ∑
n
i=1 γ j,i , ∆2(δn p j) = ∆2(p j)− 2∑

n
i=1 γ j,i and

∆2(δn p j+1) = ∆2(p j+1)+∑
n
i=1 γ j,i.

5.2 Perturbing multiple points
To perturb multiple points over multiple time steps, using the information supplied
by Γ , sort the points being perturbed into adjacency chains, i.e. sets of adjacent
control points denoted Q0, · · · ,Qs where each Qi contains either a single point or a
list of adjacent points to be perturbed. This is necessary as chains of different length
have different effects on the second differences that involve points in that chain. Let
|Qi| = u. If u = 1 then this is treated as in the single point case above. If u = 2
then we write Qi = {pk, pk+1}, and we compute the affected centered differences as
follows:

∆2(δn pk−1) = ∆2(pk−1)+
n

∑
j=1

γk, j
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∆2(δn pk) = ∆2(pk)+
n

∑
j=1

(γk+1, j−2γk, j)

∆2(δn pk+1) = ∆2(pk+1)+
n

∑
j=1

(γk, j−2γk+1, j)

∆2(δn pk+2) = ∆2(pk+2)+
n

∑
j=1

γk+1, j

If u ≥ 3 then Qi = {pk, · · · , pk+v} for some v ≥ 2. The affected centered differ-
ences are computed:

∆2(δn pk−1) = ∆2(pk−1)+
n

∑
j=1

γk, j

∆2(δn pk) = ∆2(pk)+
n

∑
j=1

(γk+1, j−2γk, j)

...

∆2(δn ps) = ∆2(ps)+
n

∑
j=1

(γs−1, j−2γs, j + γs+1, j)

...

∆2(δn pk+v) = ∆2(pk+v)+
n

∑
j=1

(γk+v−1, j−2γk+v, j)

∆2(δn pk+v+1) = ∆2(pk+v+1)+
n

∑
j=1

γk+v, j

6 Differentiable Perturbations

It may be desirable to maintain a degree of differentiability either for appearances,
analysis or both. We define a perturbation strategy that guarantees C1 continuity
(assuming the original curve is at least C1).

6.1 Perturbation strategy

We are given a composite Bézier curve to perturb. Recall that a junction point is a
point where curve segments meet. We identify three types of point:

• Type 1: A point adjacent to a junction point.
• Type 2: A junction point.
• Type 3: A point that is neither a junction point nor adjacent to a junction point.
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To maintain C1 continuity we must require that the tangent edges with a shared
junction point be collinear and have the same length [5].

Type 1
If we perturb a type 1 point in order to satisfy the C1 criteria we perturb the

junction point to the midpoint of the line segment joining its adjacent points. This
approach is illustrated in the following example, where p2 is being perturbed, rela-
tive to the junction point of p3.

Fig. 4 Type 1.

Example 2. Given a composite cubic control polygon with sub polygons {p0, p1, p2, p3}
and {p3,q1,q2,q3} as depicted in Figure 4. If we perturb p2 by a vector γ:

p2→ δ p2 = p2 + γ,

then to maintain C1 continuity we perturb p3 as follows:

p3→ p̄3 =
δ p2 +q1

2
.

Type 2
To maintain C1 differentiability when perturbing a type 2 point we must also

perturb its adjacent points by the same vector so the tangent edges are collinear and
have the same length and are collinear.

Example 3. Here we have a composite cubic control polygon with sub polygons
{p0, p1, p2, p3} and {p3,q1,q2,q3} as shown in Figure 5. Perturbing p3 by γ has
the following effect:

p2 → δ p2 = p2 + γ,

p3 → δ p3 = p3 + γ,

q1 → δq1 = q1 + γ.

Type 3
Since Type 3 points do not effect tangent edges we can just perturb them as

normal without perturbing neighboring points.



Topological Integrity for Dynamic Spline Models During Visualization of Big Data 11

Fig. 5 Type 2.

6.2 Perturbing a single point

We can now examine the effect of perturbing a single point using the strategy out-
lined above. Given

X0 = {p0, · · · , p j, · · · , pw}.
Note that

‖∆2X0‖∞N∞(d)≤ εd

Let Y = {p j} for some j ∈ {0,1, · · · ,w}. At time t1 the point p j is perturbed to
p j + γ j,1, note that adjacent points may be perturbed depending on the type.

Type 1. After all time steps are completed we have

Xn =

{
p0, · · · , p j +

n

∑
k=1

γ j,k,
p j +∑

n
k=1 γ j,k + p j+2

2
, · · · , pw

}
.

The second centered differences are affected as follows:

∆2(δn p j−1) = ∆2 p j−1 +
n

∑
k=1

γ j,k

∆2(δn p j) =

(
p j−1−

3
2

p j +
1
2

p j+2

)
− 3

2

n

∑
k=1

γ j,k

∆2(δn p j+1) = 0

∆2(δn p j+2) =

(
1
2

p j−
3
2

p j+2 + p j+3

)
+

1
2

n

∑
k=1

γ j,k.

Type 2. After the first time step

X1 = {p0, · · · , p j−1 + γ j,1, p j + γ j,1, p j+1 + γ j,1 · · · , pw},
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p j−1, p j and p j+1 are each perturbed by γ j,i at time ti, i ∈ {1, · · · ,n}.
At time tn we have

‖∆2Xn‖∞ = max{‖∆2X0‖∞,max{‖∆2(δn pk)‖} j+2
k= j−2}.

The changes to the second centered differences are as follows:

∆2 (δn p j−2) = ∆2(p j−2)+
n

∑
k=1

γ j,k

∆2 (δn p j−1) = ∆2(p j−1)−
n

∑
k=1

γ j,k

∆2 (δn p j) = 0

∆2 (δn p j+1) = ∆2(p j−1)−
n

∑
k=1

γ j,k

∆2 (δn p j+2) = ∆2(p j+2)+
n

∑
k=1

γ j,k

Type 3. If we are perturbing a type 3 point then at time tn we have

‖∆2Xn‖∞ = max{‖∆2X0‖∞,‖∆2(δn p j−1)‖,‖∆2(δn p j)‖,‖∆2(δn p j+1)‖},

with the changes in second centered differences:

‖ ∆2(δn p j−1)‖∞ = ‖∆2(p j−1)+
n

∑
i=1

γ j,i‖∞

‖ ∆2(δn p j)‖∞ = ‖∆2(p j)−2
n

∑
i=1

γ j,i‖∞

‖ ∆2(δn p j+1)‖∞ = ‖∆2(p j+1)+
n

∑
i=1

γ j,i‖∞

6.3 Perturbing multiple points

Let p j and p j+2 be type 1 point, so p j is a type 2. We consider the illustrative case
where p j,Pj+1 and p j+2 are each being perturbed over n time steps:

p j → p j +
n

∑
k=1

(
γ j,k + γ j+1,k

)
p j+1 →

1
2

(
p j + p j+2 +

n

∑
k=1

(γ j,k +2γ j+1,k + γ j+2,k)

)

p j+2 → p j+2 +
n

∑
k=1

(γ j+1,k + γ j+2,k)
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The effect on the second differences is as follows:

∆2(δn p j−1) = ∆2 p j−1 +
n

∑
k=1

(γ j,k + γ j+1,k)

∆2(δn p j) = p j−1−
3
2

p j +
1
2

p j+2 +
n

∑
k=0

(
−3

2
γ j,k− γ j+1,k +

1
2

γ j+2,k

)
∆2(δn p j+1) = 0

∆2(δn p j+2) =
1
2

p j−
3
2

p j+2 + p j+3 +
n

∑
k=1

(
1
2

γ j,k− γ j+1,k−
3
2

γ j+2,k

)
∆2(δn p j+3) = ∆2 p j+3 +

n

∑
k=1

(γ j+1,k + γ j+2,k)

7 An Example Predictive Analysis

Our predictive method is now applied to formalize the empirical observations of
Experiment 1, explicating extensions beyond previous bounds [8].

Example 4. The cubic Bézier curve of Example 1 was specifically synthesized
to permit more aggressive PL graphics perturbations than previously known [8].
Given control points X0 = {(0,6),(1,5),(2,4.5), · · · ,(2,1.5),(1,1),(0,0)}. Denote
{(0,6),(1,5),(2,4.5)} by U = {pu−2, pu−1, pu} and {(2,1.5),(1,1),(0,0)} by V =
{pv, pv+1, pv+2}. Let the display tolerance, εd = 1.9167. The maximal distance
between the curve and the control polygon is 5/12 which we trivially note is
less than the given εd . Say we wish to perturb the points in U and V over 10
time steps with perturbation vectors {γu−2,k}10

k=1 = {γu−1,k}10
k=1 = {γu,k}10

k=1 and
{γv,k}10

k=1 = {γv+1,k}10
k=1 = {γv+2,k}10

k=1 where

{γu,k}10
k=1 = { ( 0,5/20),(0,4/20),(0,4/20),(0,4/20),(0,3/20),

( 0,2/20),(0,1/20),(0,1/20),(0,1/20),(0,5/20)}, and

{γv,k}10
k=1 = { ( 0,−5/20),(0,−4/20),(0,−4/20),(0,−4/20),(0,−3/20),

( 0,−2/20),(0,−1/20),(0,−1/20),(0,−1/20),(0,−5/20)}

For this curve, 1/2ν = 1/2, a value which is clearly exceeded after 5 steps of this
strategy. Since previous criteria [8] were only sufficient, the rest of this example
demonstrates that greater perturbation is possible to support efficiency in Strategy
2. Since the analysis for points in U and V is identical we shall focus on V . Notice
that

10

∑
k=1

γv,k =

(
0,

3
2

)
.

Since pv is a type 2 point, the junction point p j = (3,3/4) will also be perturbed
as described above. Denote the control point following p j by p j+1.
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pv = (2,3/2)→ δ10 pv = (2,3)

p j = (3,3/4)→ δ10 p j = (3,3/2)

We require that for each i,

‖∆2Xi‖∞ +‖
i

∑
j=1

γX , j‖< εd .

Here ∑γX , j is the sum of the perturbation vectors applied to the control point that
yields ‖∆2Xi‖∞. These quantities are easily calculated using the analysis above. It is
easy to see that ‖∆2Xi‖∞ +‖∑

i
j=1 γX , j‖< εd for i = 1, · · · ,9. At the ninth time step

we have
‖∆2X9‖∞ +‖

9

∑
j=1

γX , j‖= 0.65+1.25 = 1.9 < εd

At the tenth time step

‖∆2X10‖∞ +‖
10

∑
j=1

γX , j‖= 0.667+1.5 = 2.167 > εd

Observing this we are now aware of the need to refine the control polygon by sub-
division. Note that [3] and [14] allow us to determine the amount of subdivision
required so that an ambient isotopic approximation is guaranteed

8 Conclusions and Future Work
For dynamic visualization of molecular simulations it is important to ensure that the
rendered curve and the underlying spline are ambient isotopic at each time step. That
global bounds on these perturbations can be exceeded if only local perturbations are
executed is obvious, the performance imperatives for dynamic visualization make
such data-specific refinements relevant, as is explored here. This can be achieved
by keeping track of changes to the second centered differences and applying further
subdivision as required.

The above analysis was performed for B-spline curves, the surface case was not
pursued but we expect that the results can be extended to B-spline surfaces easily.

The molecules modeled certainly have 3-dimensional structure that is not cap-
tured by the 1-dimensional spline models. The reduction in dimension was chosen
to support the performance demands of dynamic visualization of an ongoing sim-
ulation producing peta-bytes of output, while still being able to capture essential
topological characteristics needed for zero-th order analyses. A similar reduction
of dimension was undertaken to simplify engineering design studies [6]. The user
identifies boundaries, that are modeled as 1-dimensional curves, as abstractions to
convey design intent. This low-order geometry affords interactive manipulation and
constraint satisfaction. Emerging VR techniques rely upon hand and finger gestures
to express design variations. It would be desirable to adapt such gestures to inter-
active steering of these molecular simulations, providing further opportunities to
share these research perspectives. Indeed, some of the required emphasis on graph-
ics manipulation is being pursued, concurrently, under associate technology transfer
projects [7] for gesture based editing during production of computer animations in
the film making industry. An ideal outcome would be the effective merging from
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these three fronts of molecular simulation, engineering design and film making – as
remains the subject of planned activities.
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