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Abstract

Given a nonsingular compact two-manifold F without boundary, we present methods for establishing a family of surfaces which can

approximate F so that each approximant is ambient isotopic to F: The methods presented here offer broad theoretical guidance for a rich class

of ambient isotopic approximations, for applications in graphics, animation and surface reconstruction. They are also used to establish

sufficient conditions for an interval solid to be ambient isotopic to the solid it is approximating. Furthermore, the normals of the approximant

are compared to the normals of the original surface, as these approximating normals play prominent roles in many graphics algorithms.

The methods are based on global theoretical considerations and are compared to existing local methods. Practical implications of these

methods are also presented. For the global case, a differential surface analysis is performed to find a positive number r so that the offsets

Foð^rÞ of F at distances ^r are nonsingular. In doing so, a normal tubular neighborhood, FðrÞ; of F is constructed. Then, each approximant

of F lies inside FðrÞ: Comparisons between these global and local constraints are given.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

The problem of approximation of surfaces is of

fundamental importance both in theoretical as well as in

applied mathematics. In particular, in computer-aided

geometric design (CAGD) it plays a crucial role in the

discretization of the data for meshing applications. These

applications generate, in general, piecewise linear (PL)

approximations of the actual surface. In order for these

approximations to be of practical, as well as of theoretical,

value, it is often desirable to be within a tolerance given by

the user. Simultaneously, it is also important to have

topological equivalence via an ambient isotopy between the

approximant and the original surface.

In this paper we propose global methods for creating a

family of approximating surfaces to a given nonsingular

compact surface F; while ensuring that each approximant is

ambient isotopic to the original surface F: This, for

example, is useful in graphics and animation, where lower

degree surface approximants are often used for performance

reasons, but the visual imperatives demand preservation of

topological form. There can also be applications to surface

reconstruction, as existing reconstruction methods only

provide for PL approximations, while the proposed method

is suitable for higher order approximations. Our primary

tool is creating the offset of a surface. This is motivated by

the recent work of Wallner et al. [30] in which some of the

geometric and algebraic properties of offsets are explored.

An offset surface is used in the construction of a normal

tubular neighborhood of a manifold. Offset surfaces also

have diverse potential applications in geometric modeling,

such as in the construction of tolerance zones, the generation

of tool paths for numerical control machining, etc. A second

application is to interval solids, where sufficient conditions

are given for an interval solid to be ambient isotopic to the

solid that is being approximated.

The paper is organized as follows: in Section 2 we

summarize related work. In Section 3 we present some

fundamental definitions and basic results from differential

topology and offset surfaces. The methods presented are
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based upon constraining the approximant to lie within a

bounded offset of the surface, as determined by consider-

ations from differential topology. To do so, a focal point is

defined in Section 3.1, along with an intuitive explanation.

Section 3.2 provides the constraints that are used to define a

nonsingular offset surface and a tubular neighborhood, as

tools in the approximation process. In particular, we give

conditions on r so that the offset(s) Foð^rÞ of F are

nonsingular. Section 4 gives a formal definition of ambient

isotopy and contains the main theorem, giving criteria for a

family of approximating surfaces to be ambient isotopic to a

single surface. This section concludes with a discussion of

how these results can be applied to improve the state of the

art for surface reconstruction. Section 5 expands the topic to

solids, by consideration of a surface bounding a finite

volume. The particular focus is upon interval solids. In

Section 6 a comparison between our methods and

previously published techniques is presented. The error

bounds on approximating normals for the PL case is

presented in Section 7. Closing remarks are given in

Section 8.

2. Related work

Classical aspects of topology [31] are emerging as

valuable tools in solid modeling. As approximation is

unavoidable in solid modeling, the question of whether an

approximation is ‘good enough’ to preserve the essential

features of the object is of central importance. Previous

publications by the first two authors have invoked the

concept of ambient isotopy, a topological notion of

equivalence for admissibility of approximations to curves

[21] and surfaces [7].

The notion of ‘computational topology’ [6] has been

proposed primarily as the merging of combinatorial

topology and computational geometry. Most work in

computational topology to date [6,15] has ignored differ-

entiability and approximation. To the contrary, the present

work emphasizes the integration of general topology,

differential topology and approximation.

The following description is the basis for preferring

ambient isotopy for topological equivalence versus the more

traditional equivalence by homeomorphism [31], and

summarizes the justification previously presented [7].

While a formal statement of ambient isotopy is provided

in Section 4, for present purposes the following informal

notion will be sufficient. Intuitively, two closed curves will

not be ambient isotopic if they form different knots, which

can only be converted into each other by untying one knot

and retying it to conform to the other. Although any two

simple closed planar curves are ambient isotopic, Fig. 1

shows two simple homeomorphic space curves, which are

not ambient isotopic, because they describe different knots.1

The smooth curve depicts the simplest closed curve, known

as the unknot. The PL curve is an approximation of the

smooth curve. In the right half of Fig. 1 the z-coordinates of

some vertices are indicated to emphasize the knot crossings

in R3 (All other end points have z ¼ 0). All end points of the

line segments in the approximation are also points on the

original curve. Having this knotted curve as an approximant

to the original unknot would be undesirable in many

circumstances, such as graphics and engineering simu-

lations. Similar pathologies can happen in approximating

surfaces, but the work presented here can prevent these

problems by appropriately constraining the approximations

produced.

Earlier surface reconstruction algorithms guaranteed

topological equivalence to the original surface by means

of homeomorphisms [3,4,19].

A common technical tool for demonstrating an

ambient isotopy of compact support is a function

known as a ‘push’ [11]. A generalization of a push is

used in the proof given in this paper.

The issue of rigorous proofs for the preservation of

topological form in geometric modeling appears to have

been initially raised within engineering design in

problems regarding tolerances [12,13,29], but these

papers did not directly propose ambient isotopy as a

criterion. The class of geometric objects considered was

appreciably expanded by theorems for ambient isotopic

perturbations of models with spline boundaries [9,10].

For the simpler case of polygonal models, similar

topology preserving approximations had been presented

earlier under different technical terminology [8,14].

In response to the example of Fig. 1, a theorem was

published that provided for ambient isotopic PL approxi-

mations of one-manifolds [21]. The proof utilizes ‘pipe

surfaces’ from classical differential geometry [24]. The

improved approximation is shown in Fig. 2. There is also

Fig. 1. Nonequivalent knots.

1 The different knot classifications of 01 and 4m
1 are indicated.
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a publication of comparison of curves to a-shapes [16] via

ambient isotopies [27].

3. Preliminaries

In this section we review some elementary facts

about manifolds and offsets, taken from Refs. [22,30],

that we will need in Section 4. In particular, we prove

our initial basic result, Theorem 6, which is the key to

the proof of Corollary 8. The theoretical results

presented here were motivated by the pragmatic view

that other surface reconstruction methods [2,5,7] depend

upon a supporting computation of the medial axis, which

must also be approximated from sampled data. The

methods given here eliminate this intermediate approxi-

mation of the medial axis, which is often a formidable

task. This may result in a need for denser sampling, but

it is beyond the scope of the present paper to make a

comprehensive comparison of the detailed implemen-

tations of these competing methods. The sampling

criteria presented here remains admittedly implicit.

Namely, if one wishes to reconstruct a surface from

sampled data, then the surface must be sampled densely

enough that the reconstructed approximant lies within

Foð^rÞ: This is consonant with methods previously

developed for one-manifolds [21].

3.1. Differential topology: critical points

Let f ðx1;…; xnÞ : Rn ! R be a smooth function. A point

a [ Rn is called a critical point of f if all first partial

derivatives of f are zero at a; that is ð›f =›xiÞðaÞ ¼ 0; for

all i: Furthermore, a is called a nondegenerate critical

point of f ; if

1. a is a critical point of f ; and

2. The matrix Hf ðaÞ ¼ ð›2f =›xi›xjÞ of the second partial

derivatives of f at a is invertible. (This matrix is also

known as the Hessian matrix of f ).

Remark 1. A critical point of f that is not nondegenerate is

called degenerate.

The notions of degenerate/nondegenerate critical points

can be carried out on a real function on a manifold W of any

dimension. Here, however, we shall specialize on manifolds

of dimension 2. Let then F , R3 be a manifold of

dimension 2, and let g : F ! R be a smooth function. A

point a [ F shall be called a critical point of g if the

gradient vector ðð›g=›x1Þ; ð›g=›x2Þ; ð›g=›x3ÞÞ is parallel to

the unit normal vector na of F at a: Let a be a critical point

of g; and let u1; u2 be local coordinates on F around a: Let

HgðuÞ ¼ ð›2g=›ui›ujÞ be the Hessian matrix of g at a with

respect to the coordinates u1; u2: Then, a is called

degenerate/nondegenerate if HgðuÞ is singular/nonsingular,

respectively.

Let F , R3 be as above and let N , F £ R3 be

defined as

N ¼ {ðq; vÞ l q [ F; v is perpendicular to F at q}

It is easy to see that N is a three-dimensional manifold

differentiably embedded in R6:

Let E : N ! R3 be defined as Eðq; vÞ ¼ q þ v: (E is

called the endpoint map.)

Definition 2. A point e [ R3 is a focal point of ðF; qÞ with

multiplicity m if e ¼ q þ v where ðq; vÞ [ N and the

Jacobian of E at ðq; vÞ has nullity m . 0: The point e will

be called a focal point of F if e is a focal point of ðF; qÞ for

some q [ F:

Intuitively, a focal point of F is a point of R3 where

nearby normals intersect. Now consider the normal line L to

F that goes through q and consists of all points q þ tnq;

where nq is the unit normal of F at q and t [ R: We then

have:

Lemma 3. ([22], lemma 6.3, p. 34) The set of focal points of

ðF; qÞ along L is the set of points q ^ K21
i nq; where i ¼

1; 2;Ki – 0 are the principal curvatures at q:

Fig. 2. Ambient isotopic approximation.
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3.2. Offset surfaces

Let F , R3 be an orientable2 two-manifold which is

C2 (at each point of the manifold, the second derivative

exists and is continuous); we will also call F a

nonsingular surface in R3: We shall choose an orientation

on F as follows: let v [ F and let v1; v2 be a positively

oriented basis for the tangent space TFv; regarded as a

subspace of R3: We say that F has the positive orientation

at v if det½nv; v1; v2� . 0; where nv is the unit surface

normal of F at v: Then F has positive orientation, if it has

positive orientation at each of its points. (The term of

negative orientation is defined similarly, with the obvious

change of sign.) Let r [ R: Then, the positive offset FoðrÞ

of F and the negative offset Foð2rÞ of F are defined,

respectively, as:

FoðrÞ ¼ {x þ rnx l x [ F} and

Foð2rÞ ¼ {x 2 rnx l x [ F}: ð1Þ

A simple geometric interpretation of the offset FoðrÞ is the

surface locus swept out by the center x þ nx of a sphere of

radius lrl as the sphere rolls over every point x of F;

where the nx are consistently oriented relative to F:

In this subsection we will prove several results concern-

ing offsets. In particular, we will give necessary and

sufficient conditions on r so that FoðrÞ is nonsingular in

terms of certain differential and geometric considerations of

the surface F: (Clearly, these results apply similarly to

Foð2rÞ:) We will restrict our attention to compact

manifolds without boundary.

Our first result comes as a direct application of Lemma 3.

Proposition 4. Let FoðrÞ be as in Eq. (1) and let

g : F ! FoðrÞ , R3
; gðxÞ ¼ x þ rnx ð2Þ

Then, the Jacobian of g at x has nullity m . 0 if and only if

x þ rnx is a focal point of F:

Proof. The proof is a slight modification of the proof of

Lemma 3. A

Proposition 4 shows that FoðrÞ is locally a two-

dimensional manifold at x þ rnx precisely when x þ rnx

is not a focal point of F:

We will proceed with the question when g is globally

1–1. For this, we define the map

G : F £ F ! R; Gðx; yÞ ¼ kx 2 yk2: ð3Þ

Obviously, Gðx; yÞ . 0; for x – y: Second, note that G has a

critical value r . 0 since F £ F is compact. Let x; y [ F

with Gðx; yÞ ¼ r: Then, it is easy to see that nx ¼ ^ny and

the vector x 2 y is parallel to both nx and ny: Third, we

claim that if

c ¼ inf{r . 0 l r; r is a critical value of G} ð4Þ

then c is positive. For if c were to be zero, we would then

have that for each arbitrarily small positive d there exists a

pair of points ðxd; ydÞ so that

† kxd 2 ydk , d and

† the vector xd 2 yd is parallel to both nxd
;nyd

:

Since d can be arbitrarily small, then xd; yd have to

belong to the same component of F: Now let a be any point

of F: Using the implicit function theorem, we may choose

local coordinates u1; u2 around a so that F becomes the

graph of a smooth function v ¼ hðu1; u2Þ with

ð0; 0; hð0; 0ÞÞ ¼ a and ›h=›u1 ¼ ›h=›u2 ¼ 0 at ð0; 0Þ: For a

point b [ F near a we choose a corresponding point ðb1; b2Þ

close to ð0; 0Þ so that b ¼ ðb1; b2; hðb1; b2ÞÞ: The normal

vector of M at a is ð0; 0; 1Þ while the normal of F at b is

ðð›h=›u1Þ; ð›h=›u2Þ; 1Þ; where the partials are evaluated at

ðb1; b2Þ: Then,

b 2 a ¼ ðb1; b2; hðb1; b2Þ2 hð0; 0ÞÞ;

and thus the vector b 2 a is not parallel to ð0; 0; 1Þ; which is

the normal of F at a; for a – b: This proves the claim.

Definition 5. Let x; y [ R3; and X;Y , R3: We define

dMðX;YÞ ¼ maxx[X miny[Y kx 2 yk;
For a [ R3; a point s [ X is a nearest point on X to a if

ka 2 sk ¼ min{ka 2 tk l t [ X}:

We now consider a r . 0 so that

C1 For each point x of F neither principal curvature of F at

x is equal to ^1=r; and

C1 2r , c; where c is as in Eq. (4).

We then have the following:

Theorem 6. For r as above, and g as in Eq. (2), g is an 1–1

map.

Proof. For a positive number e we may define the open set

FðeÞ ¼ {x [ R3 l dð{x};FÞ , e}:

Using the e-Neighborhood Theorem, [17, p. 69], we may

find an e with the following properties:

† Each point w [ FðeÞ possesses a unique nearest point in

F; denoted by pðwÞ; and

† the map p : FðeÞ! F;w ! pðwÞ; is a submersion.

2 For the context of this paper, we are considering two-manifolds

embedded in R3: Since nonorientable two-manifolds without boundary can

only be embedded in Rn; for n $ 4 [18, theorem 4.7], the additional

assumption of orientability leads to no loss of generalization in the present

proofs.
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Now note that if r is chosen to satisfy C1, C2 and is less

than e ; then g is 1–1. For if z [ FoðrÞ then its distance

from F is exactly r: Thus, if z ¼ x þ rnx ¼ y þ rny; then

kz 2 xk ¼ kz 2 yk ¼ r: Therefore, pðzÞ ¼ x ¼ y:

Suppose now that r is the first positive number for which g

is not 1–1. Let then x – y for which gðxÞ ¼ gðyÞ; that is

x þ rnx ¼ y þ rny: Then, x 2 y ¼ rðny 2 nxÞ: We claim

that in this case ðx; yÞ is a critical point of G: For if not, the

locally two-dimensional manifold FoðrÞ has a nontangential

self-intersection at gðxÞ; and that contradicts the choice of r:

Thus, kx 2 yk ¼ 2r: But kx 2 yk $ c and this is a contra-

diction to C2. A

Finally, we have:

Corollary 7. Let F be a compact orientable surface without

boundary. Then FoðrÞ is a nonsingular surface if r satisfies

conditions C1 and C2.

Corollary 8. Let r [ ð0;1Þ be so that r satisfies conditions

C1 and C2. Then, the open set FðrÞ is a normal tubular

neighborhood of F: In addition, if r is such that 0 # r # r;

then,

† The offsets FoðrÞ and Foð2rÞ are nonsingular.

† Every point w [ FðrÞ has a unique nearest point pðwÞ

in F:

† Let pr be the nearest point function pr : FðrÞ! F;

prðvÞ ¼ pðvÞ: Then, for every point x [ F the set p21
r ðxÞ

is equal to ðx 2 nx; x þ nxÞ:

The concept of a tubular neighborhood of a submanifold

without boundary is not new; a result similar to the above,

stating its existence, appears in [18, theorem 5.2]. Here,

however, an explicit numerical bound on the size of the

neighborhood is presented, which is useful in computational

applications. One can visualize a tubular neighborhood of F

as follows: suppose that F is made out of thin rubber. Then,

by uniformly inflating and deflating the interior of F so that

no singularities occur in F; a tubular neighborhood is

nothing but the union of the volumes created by the inflation

and deflation of F:

4. Ambient isotopic approximations

Many approximation schemes for surfaces are concerned

with the existence of a homeomorphism between the actual

surface and its approximant. However, the latter does not

guarantee that the surface and its approximant have the same

embedding within R3: As an example of different embed-

dings in R3; consider the standard torus and a variant of it. Let

T denote the regular torus T ¼ S1 £ S1; where S1 is the unit

circle. Let KT denote a knotted torus, KT ¼ S1 £ K; where K

is a trefoil knot, chosen so that KT is homeomorphic to T :

However, within R3; one cannot continuously deform T

into KT : This is demonstrated by showing that the spaces

R3 2 T and R3 2 KT do not have the same homotopy type

[23, p. 103, theorem 1].

Two related notations are defined here for use within the

rest of the paper. Both concepts are standard in general

topology and can be found in any basic topology text [31].

For any topological space X and any subset A in X; the

notation clXA refers to the closure of A in X: For any

topological space X and any subset A in X; the notation

IntXA refers to the interior of A in X: In cases where the

particular space X being used is obvious from context, then

the subscript is typically deleted, as is done in this paper,

where X ¼ R3:

The following definition (Fig. 3) is central to the rest of

the paper and it gives precise meaning to when two objects

are both homeomorphic and have the same embedding

within R3:

Definition 9. Let X;Y be subsets of R3: Then we say that X

and Y are ambient isotopic if there is a continuous function

H : R3 £ ½0; 1�! R3

such that for each t [ ½0; 1�;Hð·; tÞ is a homeomorphism

from R3 onto R3;Hð·; 0Þ is the identity and HðX; 1Þ ¼ Y :

In the illustrative Fig. 3, the set X is continuously

deformed into Y ; while simultaneously, the region bounded

by X and the horizontal dashed line segment is being

deformed into the region bounded by Y and the horizontal

dashed line segment. Thus, the smaller region is being

stretched into a larger one. At the same time the region

bounded by X and the two nonhorizontal line segments is

being deformed into the region bounded by Y and the two

nonhorizontal line segments, contracting a larger region into

a smaller one. These complementary expansions and

contractions allow for the definition of a continuous map

that fixes all points on the boundary of and exterior to the

triangle.

Fig. 3. Ambient isotopy.
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The techniques of offsets and tubular neighborhoods

given in Section 3 enable us to establish sufficient criteria

for ambient isotopy of certain surfaces. In that regard, we

term our results as global in the sense that the surface is

perturbed globally.

Prior to the statement and proof of the main theorem

of this paper, it is helpful to define two functions on

intervals. These will be combined to form an ambient

isotopy. Both are similar to the push function [11]. Let F be

our surface and let r be as in Corollary 8. For a point x [ F,

let Iðx; rÞ be the closed line segment that connects the points

x2r ¼ x 2 rnx and xþr ¼ x þ rnx.

Let x [ F and let q [ Iðx; rÞ be a point different

than x2r and xþr . Then we define the homotopy
�fq : ½x2r ; x� £ ½0; 1�! Iðx; rÞ that keeps x2r fixed, by

�fqð½x
2
r ; x�; 0Þ ¼ ½x2r ; x�;

�fqð½x
2
r ; x�; 1Þ ¼ ½x2r ; q�;

and ;t [ ð0; 1Þ, the image of ½x2r ; x� is of the form

½x2r ; ð1 2 tÞx þ tq�. Similarly, we define the homotopy

f̂q : ½x; xþr � £ ½0; 1�! Iðx; rÞ that keeps xþr fixed, by

f̂qð½x; x
þ
r �; 0Þ ¼ ½x; xþr �;

f̂qð½x; x
þ
r �; 1Þ ¼ ½q; xþr �;

and ;t [ ð0; 1Þ, the image of ½x; xþr � is of the form

½ð1 2 tÞx þ tq; xþr �.

The following is the main result of this section, and

provides a means of establishing a family of surfaces

ambient isotopic to F:

Theorem 10. Let F , R3 be a compact nonsingular two-

manifold without boundary, and r as in Corollary 8. Let also

W , R3 be a compact two-manifold without boundary that

satisfies the following:

† W , FðrÞ, and

† For every x [ F; Iðx; rÞ intersects W at precisely one

point, denoted as wðxÞ.

Then, W is ambient isotopic to F and dMðF;WÞ , r (Fig. 4).

Proof. Since F is compact, it is clear that ›FðrÞ is compact.

Furthermore, since FðrÞ is open and W , FðrÞ; it is also

clear that dðW ; ›FðrÞÞ . 0:

To define the ambient isotopy, it is sufficient to consider,

for each x [ F; the behavior of the ambient isotopy along

the interval originating at x2r and terminating at xþr : This is

done simply by the following piecewise definition.

Define the function H : R3 £ ½0; 1�! R3 by

Hðz; tÞ ¼

z if z[R3 2FðrÞ; ;t [ ½0;1�;

�fwðxÞðz;2tÞ; if x[ F; z[ ½x2r ;x�; t [ ½0;1=2�;

f̂wðxÞðz;2t21Þ; if x[ F; z[ ½x;xþr �; t [ ½1=2;1�:

8>>><
>>>:

Note that the piecewise definition of H agrees on ›FðrÞ: It is

obvious that H is a homotopy such that Hðz;0Þ ¼ z; ;z[R3

and HðF;1Þ ¼W : To complete the proof that H is an

ambient isotopy, it suffices to show that Hð·; tÞ is a

homeomorphism for all t [ ½0;1�: However, since for each

t [ ½0;1�; the continuous function Hð·; tÞ is the identity

outside the compact set clR3 FðrÞ (and is also the identity

along the boundary of clR3 FðrÞ), it only remains to show

that Hð·; tÞ is 1–1 for all x[ clR3 FðrÞ: But, this follows

easily, since for all x;y[F; with x– y; we have, by

hypothesis, that the corresponding intervals are disjoint,

namely,

½x2r ;x
þ
r �> ½y2r ;y

þ
r � ¼B:

The bound given on the distance between W and F follows

directly from the containment of W within FðrÞ: A

This completes the proof of a demonstration of a

particular ambient isotopy, where the proof presented is

similar to classical arguments [18, chapter 5], with the

additional information provided here of a numeric bound on

the size of the neighborhood containing the ambient isotopic

images, in contrast to the classical arguments merely

proving the existence of some neighborhood.

Corollary 11. Let F; r be as in Theorem 10. Then for

every r such that 0 # r # r;FoðrÞ is ambient isotopic to

F and dMðF;FoðrÞÞ # r:

The above results provide an abundance of surfaces W

ambient isotopic to F: Note that any such W is inside the

tubular neighborhood FðrÞ and within tolerance r from F:

Existing methods [7] produce one PL approximant, whereas

Corollary 11 provides for the existence of infinitely many

ambient isotopic approximants, each with bounded

Fig. 4. Intersecting W in precisely one point.
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deviation from F: The new methods presented here may be

valuable for applications in reverse engineering, where the

desired output is often a CAGD B-rep model with spline

boundary surfaces rather than just a PL approximant and the

data to compute r may be available within the engineering

specification [26].

5. Application to interval solids

Let F be our surface, as given in Theorem 10. It is

intuitively obvious that if one generates another surface by

continuous local perturbations of F; which neither create

new self-intersections nor remove any existing self-inter-

section, the perturbed surface will be ambient isotopic to F:

In this application, we will make use of this idea and

approximate F by another surface which is generated by

local perturbations of F: This construction yields a PL

approximation and is motivated by the recent work of

Sakkalis et al. [28], in which the concept of an interval solid

is defined and some of its fundamental topological and

geometric properties are proved.

Throughout this section, a box is a rectangular, closed

parallelpiped in R3 with positive volume, whose edges are

parallel to the co-ordinate axes. Such boxes are used to

create ‘interval solids’, as defined and discussed in Ref.

[28]. Some critical supporting material from Ref. [28] will

be summarized here, to keep the paper reasonably self-

contained.

Let F be our surface, and assume that F is connected.

Then the Jordan Surface Separation Theorem asserts that the

complement of F in R3 has precisely two connected

components, FI ;FO; we may assume that FI is bounded

and FO is unbounded. Let also B ¼ {bj; j [ J} be a finite

collection of boxes which meets the following conditions:

C3 {IntðbjÞ; j [ J} is a cover of F:

C4 Each member b of B intersects F generically; that is,

b > F is a nonempty closed disk that separates b into

two (closed) balls, Bþ
b and B2

b ; with Bþ
b ; ðB

2
b Þ lying in

FI < FðFO < FÞ; respectively.

C5 For any bi; bj [ B; let bij ¼ bi > bj: If IntðbiÞ>
IntðbjÞ – B; then bij is also a box having property C4.

In Ref. [28], conditions C3–C5 were assumed. Notice

that condition C4 indicates that every b [ B intersects F in

a natural way (Fig. 5).

The following result summarizes several previously

appearing results.

Theorem 12. [28, corollary 2.1, p. 165] If F is connected

and B satisfies C3–C5, then F > Uj[Jbj is a solid.

To this end, we will show that whenever F is a connected

surface satisfying the hypotheses of Theorem 10, then F is

ambient isotopic to the boundary of an interval solid

constructed from F; as described in Theorem 12. To do so,

we introduce some well known results from the literature.

Definition 13. [11, p. 214] A closed subset K of a PL

three-manifold-with-boundary M is tame if there is a

homeomorphism h : M ! M such that hðKÞ is a

polyhedron.

Definition 14. [20, p. 371] Let M be a manifold with

boundary, under the Euclidean metric d: Denote by HðMÞ

the set of all homeomorphisms of M onto itself. Define a

function a of H £ H into the real extended number

system as follows: aðf ; gÞ ¼ supx[Mdðf ðxÞ; gðxÞÞ: Then, if

e . 0; f and g are e-isotopic if there is an isotopy Ht

such that H0 ¼ f ;H1 ¼ g and if t1; t2 [ ½0; 1�; then

aðHt1
;Ht2

Þ # e :

The following Theorem 15 has previously appeared as a

corollary [20] to a broader result which we do not need in

this paper.

Theorem 15. [20, corollary 2, p. 372] If K is a tame compact

two-manifold in any three-manifold M and e . 0; there is a

d . 0 so that if h is any homeomorphism of K into M

moving no point more than d and if hðKÞ is tame, then there

is an e-isotopy of M taking hðKÞ onto K pointwise and

moving no point outside an e-neighborhood of K:

We are now in a position to present our main result of

this section.

Theorem 18. Let F be tame and connected. For each

e . 0; there exists g; with 0 , g , r so that whenever a

family of boxes B satisfies conditions C3–C5, and for

each b of B; b is a proper subset of FðgÞ (Fig. 6) then,

for S ¼ F < FI and SB ¼ S <
S

j[J bj; the sets F and ›SB

are e-isotopic with compact support. Hence, they are

also ambient isotopic.

Proof. It has previously been shown [28] that F and ›SB are

homeomorphic by construction of an explicit homeo-

morphism. It has also been shown that M ¼ SB is a compact

Fig. 5. 2D versions of conditions C4 and C5.
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three-manifold with boundary [28]. Furthermore, it is clear

that M is PL. Consider now K ¼ ›SB: Since K is already a

polyhedron, K is tame under the identity map on M and K is

also a compact three-manifold within M: For the given e ; let

d be as given in Theorem 15. Furthermore, the home-

omorphism h : K ! F created [28] such that hðKÞ ¼ F

relied upon a projection from the boundaries of the boxes

onto F; where all of the boxes lie within FðrÞ: Hence, no

point can be moved by h more than the maximal distance of

the boundary of any box from F: Let now g ¼ min{r; d}:

Then h complies with the distance constraint of Theorem 15

and hðKÞ ¼ F; where F is tame. Since M is compact, the e-

neighborhood provided by Theorem 15 implies that the e-

isotopy has compact support. Hence K and F are ambient

isotopic. A

6. Global versus local methods

With an offset surface, there is a fixed value for the offset,

resulting in a normal tubular neighborhood where the points

generated as images of the endpoint map are all the same

distance from the manifold. However, ambient isotopic

approximations can be created where these distances need

not all be equal [7], but are defined subject to local surface

characteristics.

The proofs given in the present paper rely upon creation

of a normal tubular neighborhood about F: While this is a

sufficient condition it is not necessary that the original

surface be entirely contained within an open neighborhood.

In particular, there can be fixed points for an ambient

isotopy [7].

There are two primary advantages to using offsets versus

existing work [2,7] relying upon the medial axis [7] to

construct a piecewise-linear ambient isotopic approxi-

mation of a manifold:

1. approximating the medial axis is a difficult task [5]

whereas the method presented here requires no such

computation and

2. the ambient isotopic approximants presented here need

not be PL, and this may be valuable in engineering

problems where the primary data representations are

free-form surfaces.

Example. Let E be any nondegenerate, noncircular ellipse,

which, without loss of generality, is assumed to be

symmetric about the origin in the usual x 2 y plane. There

exists a minimal value of r . 0 such that the internal offset

E by r is self-intersecting, and designate this offset by

Eoð2rÞ: Now, consider any nondegenerate circle C centered

about the origin so that C is inside Eoð2rÞ: There exists an

ambient isotopy from E to C; which can easily be

constructed by parametrizing C and E by s [ ½0; 2p� so

that the mapping of points with the same parametric values

is 1 2 1; as depicted in Fig. 7. The obvious generalizations

can be made in three dimensions, leading to the conclusion

that if one only wishes to generate an ambient isotopic

approximation, that the bounds previously given in this

paper as well as in previous work [2,7,21] can be overly

restrictive.

7. Comparisons of normals

This paper has, so far, emphasized two criteria for

surface approximations

1. an upper bound on the distance between the approxi-

mating surface and the original surface, and

2. sufficient conditions for the approximant to be topologi-

cally equivalent to the original, via the strong criterion of

ambient isotopy.

Other aspects, however, of a PL approximation are also

of practical interest. In particular, one may wish to

determine how far the normals of a PL approximant differ

from the normals of the original, especially for applications

in graphics. Note, that a PL surface reconstruction is

guaranteed [7] to be ambient isotopic to the original surface

under the condition of having a sampling density at each

point p [ F that is bounded by

r £ dðp;MAðFÞÞ; with r ¼ 0:08; ð5Þ

where MAðFÞ denotes the medial axis of F:

Fig. 6. 2D versions of proper subset condition.

Fig. 7. Ambient isotopy by parameter matching.
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Previous surface reconstruction [2] work has investigated

the approximation of true surface normals by the normals

of the reconstructed surface, but with an upper bound of 1=7

on the value of r defined in Eq. (5). Since the ambient

approximations presented here are not constrained by the

values of r presented in Eq. (5), it remains of interest to

examine error bounds on these approximating normals, as

will be demonstrated by adapting published comparison

techniques [25] to an illustrative example. We further note

that the approach presented here for comparison of normals

may also extend to practical surface reconstruction

problems, because, in practice, it has been found that a

factor of r in Eq. (5) as high as 0.4 often produces acceptable

algorithmic output [1].

We provide an example to illustrate the computation of

error bounds on approximating normals. Both this paper and

our guiding Ref. [25] share the following aspects in the

construction of a PL approximation M of the original

surface F. For each point m [ M; there exists a unique

nearest point pðmÞ [ F: Then one considers the normal to

M at m, denoted here as nM
m and the normal to F at pðmÞ;

denoted here as nF
pðmÞ: Then, after identifying the points m

and pðmÞ; the angle between nM
m and npðmÞF can be

measured for each m: Then the upper bound is the

supremum of these angular differences, taken over all

points m in M:

First we created a NURBS curve C that is a trefoil knot.

Then, we created a surface K by sweeping a circle of radius

0.01 with its center moving along the curve C (Fig. 8). This

surface K was created so that the distance at each knot

crossing was greater than 0.01, so that a nonsingular open

normal tubular neighborhood about K could be created at

any distance less than 0.01. Note that this distance exceeds

the distance constraint imposed in Eq. (5).

The final two figures of this paper will illustrate how we

employed the paper [25] to bound the normal deviations.

The analysis [25] is critically dependant upon the length of

the longest side of any triangle created in the triangulation.

To have control of the triangles generated on the surface, we

triangulated the parametric domain. The triangles created in

the parametric domain were all right triangles. For the

particular example created, this led to corresponding

triangles approximating K so that each such triangle was

observed to be nearly a right triangle. This assumption that

the triangles are approximately right triangles simplifies our

computations. In particular, the upper bound [25, theorem 1]

formula depends, for each triangle T in the triangulation,

upon the variable strðTÞ; which is known as the straightness

of T ; and while we do not repeat the details of that

definition, here, we note that our assumption about right

triangles permits us to approximate strðTÞ by the constant

value of 1, for all triangles T :

An expression for an upper bound on the error of the

approximating normals [25, theorem 1] is presented in our

notation as

sin amax # ðð
ffiffiffi
10

p
=ð2 £ strðMÞÞÞ þ 1ÞðpFðMÞÞ=ð1 2 vFðMÞÞ;

ð6Þ

We note that with the assumptions made about right

triangles, the factor

ðð
ffiffiffi
10

p
=ð2 £ strðMÞÞÞ þ 1Þ

immediately simplifies to the constant ðð
ffiffiffi
10

p
=2Þ þ 1Þ: Then,

similar to our remarks about straightness, the reader is

referred to Ref. [25] for the detailed definition of pFðMÞ;

known as the relative height of M to F: For our estimate of

pFðMÞ; we use

pFðMÞ < L £ Pj; ð7Þ

where Pj is the maximum curvature of the original surface

and L is the length of the longest side of any triangle created

in the triangulation.

The factor vFðMÞÞ is given by

vFðMÞ ¼ supm[MkjðmÞ2 mk £ Pj:

While there are obvious performance and data volume

advantages to having fewer sampling points, there are

intuitively obvious tradeoffs among several criteria for the

approximating surface. For instance, if one considers the

following three approximation criteria

1. nearness to surface being approximated,

2. preservation of topological form, and

3. error bounds on approximating normals,

then, fewer sampling points typically provided worse

approximations relative to items 1 and 3, above, even in

the presence of ambient isotopy. The analyses and

numerical results presented here explicate those inter-

relationships in order to provide some guidance to the

practitioner towards making optimally practical choices

regarding the sampling set. This requires a judicious

balancing amongst the criteria articulated, above, as well asFig. 8. Knotted surface.

T. Sakkalis et al. / Computer-Aided Design 36 (2004) 1089–1100 1097



possibly some others (surface area, volume enclosed,

center of mass, etc.…). The approach presented here

should offer guidance for other analyses to be extensible to

include additional criteria for optimality.

In Table 1 the notation r represents the various values of

the multiplicative factor used in Eq. (5). The associated

columns indicate the corresponding values of L (as in

Eq. (7), being length3 of the longest side of any triangle

created in the triangulation) and representing the model-

space sample distance, and amax the upper bound of

deviation between the normals of vertices on the mesh

and points on the surface (in degrees).

Figs. 9 and 10 show how the true normals to the surface

deviate from the normals to the triangles approximating the

surface. Fig. 9 corresponds to the top line of Table 1 and Fig.

10 corresponds to the next line of Table 1. In both Figs. 9

and 10 a true normal to the surface at a given point is

indicated by a dashed line, whereas a solid line indicates a

normal of an approximating triangle. The deviations shown

appear to decrease from Figs. 9 and 10, as would be

expected from the decrease in the upper bounds give in

Table 1. After the second line of Table 1 the corresponding

images were such that the true and approximating normals

were so close that it was hard to discriminate between them.

To further illustrate the comparison between normals, we

also include two figures to show a close-up of selected

normals. Each of Figs. 11 and 12 shows three geometric

objects

1. a dashed line for a true surface normal,

2. a solid line for a normal to an approximating triangle, and

3. a shaded image of a triangle, where this shaded

triangle is to the right of the figure.

Both lines for the normals are placed at a vertex of the

triangle shown, which is also a point on the surface. Fig. 11

has the coarser sampling, corresponding to the third line of

Table 1. Fig. 12 has sampling which is an order of

magnitude finer than that of Fig. 11 and this finer sampling

corresponds to the fifth line of Table 1. As would be

expected from the comparison of the upper bounds in Table

1, the angle between the normals in Fig. 11 is much larger

than the corresponding angle in Fig. 12. Also, note that,

consistent with the finer sampling rate, the triangle in Fig. 12

is smaller than that in Fig. 11.

8. Concluding remarks

In this paper we focused on a method for establishing

surfaces which can approximate a given nonsingular

compact manifold F without boundary so that each

approximant is ambient isotopic to F: The approximants

need not be PL and these nonPL approximations may be

particularly useful in engineering applications where spline

geometry dominates. The methods described are also

directly applicable to creating approximants for graphics

and animation, where the underlying surfaces already have a

particular mathematical description stored in some standard

format. They offer further theoretical insight into surface

reconstruction problems, but at the expense of reliance upon

data that is not typically present when only point cloud data

is given. However, specifically for surface reconstructions

in reverse engineering, the required local data of maximum

curvature and the global data for creation of nonsingular

tubular offset neighborhoods may be available.

The results presented here start from considerations of

curvature. While local values of curvature and the medial

Table 1

Upper bound on error of approximating normal

r L amax

4:0 £ 10 2 1 4:0 £ 10 2 3 90:0þ

2:05 £ 10 2 1 2:05 £ 10 2 3 44:2

1:0 £ 10 2 1 1:0 £ 10 2 3 19:6

8:0 £ 10 2 2 8:0 £ 10 2 4 15:5

1:0 £ 10 2 2 1:0 £ 10 2 4 1:9

5:0 £ 10 2 5 5:0 £ 10 2 5 0:95

Fig. 9. Normal deviations, case 1.

Fig. 10. Normal deviations, case 2.

3 These lengths were created by using Taylor’s Theorem to compute a

related sampling in parameter space to map to these points in model space.
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axis are closely related, examples are given to show that this

primary attention to curvature affords advantages over

previous methods which relied upon the medial axis, even

when the objective is to create PL approximants. An

application presented is the demonstration of sufficient

conditions for an interval solid to be ambient isotopic to the

solid it is approximating.

The results presented are restricted to smooth surfaces,

even while real engineering parts often are only piecewise

smooth, possibly having sharp features where surface

derivatives are undefined. Consideration of such sharp

discontinuities in developing ambient isotopies over

multi-patch spline surfaces has appeared in the literature

[10], but it is beyond the scope of the present investigation

to integrate these two ideas. The theory presented here is

offered as an important a priori step to the more challenging

future extensions to real engineering parts, which the

present authors are investigating in an ongoing project.
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Appendix A

Topology definitions

Definition 17. A function f on spaces X and Y is a

homeomorphism if f is bi-continuous, 1–1 and onto.

Definition 18. A function f from X onto itself has compact

support if there exists a compact set A , X such that f is the

identity except possibly on A:

Definition 13. Two functions f and g from a space X into a

space Y are called homotopic if there exists a continuous

function F : X £ ½0; 1�! Y such that for each point x [ X;

Fðx; 0Þ ¼ f ðxÞ and Fðx; 1Þ ¼ gðxÞ:

Definition 18. Two functions f and g from a space X into a

space Y are called isotopic if they are homotopic via a

function F such that for each t [ ½0; 1�;Fð·; tÞ is a

homeomorphism.

If the original functions f and g are both onto Y , then we will

interchangeably refer to the functions being isotopic, as well

as the spaces X and Y being isotopic. It is this latter usage

that is adopted within the main body of this paper in the

definition of ambient isotopy given in Definition 9.

References

[1] Amenta N. Personal communication. May 15; 2003.

[2] Amenta N, Bern M. Surface reconstruction by voronoi filtering.

Discrete Computational Geometry 1999;22:481–504.

Fig. 11. Coarse sampling (0.1).

Fig. 12. Finer sampling (0.01).

T. Sakkalis et al. / Computer-Aided Design 36 (2004) 1089–1100 1099



[3] Amenta N, Bern M, Kamvysselis M. A new voronoi-based surface

reconstruction algorithm. Proc ACM SIGGRAPH, ACM; 1998. p.

415–21.

[4] Amenta N, Choi S, Dey T, Leekha N. A simple algorithm for

homeomorphic surface reconstruction. ACM Symposium on Compu-

tational Geometry. 2000. p. 213–22.

[5] Amenta N, Choi S, Kolluri R. The power crust, union of balls and the

medial axis transform. Computational Geometry: Theory Appl 2001;

19:127–73.

[6] N. Amenta et al. Emerging challenges in computational topology. In

Workshop Report on Computational Topology. NSF; June 1999.

http://xxx.lanl.gov/abs/cs/9909001

[7] Amenta N, Peters TJ, Russell AC. Computational topology: ambient

isotopic approximation of 2-manifolds. Theor Comput Sci 2003;305:

3–15.

[8] Andersson L-E, Dorney SM, Peters TJ, Stewart NF. Polyhedral

perturbations that preserve topological form. Comput Aided Geo-

metric Des 1995;12:785–99.

[9] Andersson L-E, Peters TJ, Stewart NF. Selfintersection of composite

curves and surfaces. Computer Aided Geometric Des 1998;15(5):

507–27.

[10] Andersson L-E, Peters TJ, Stewart NF. Equivalence of topological

form for curvilinear geometric objects. Int J Computational Geometry

Appl 2000;10(6):609–22.

[11] Bing RH. The Geometric topology of 3-manifolds. Providence, RI:

American Mathematical Society; 1983.

[12] Boyer M, Stewart NF. Modeling spaces for toleranced objects. Int J

Robotics Res 1991;10(5):570–82.

[13] Boyer M, Stewart NF. Imperfect form tolerancing on manifold

objects: a metric approach. Int J Robotics Res 1992;11(5):482–90.

[14] Cohen J, et al. Simplification envelopes. Proc ACM SIGGRAPH 96,

ACM; 1996. p. 119–28.

[15] Dey TK, Edelsbrunner H, Guha S. Computational topology. Advances

in discrete and computational geometry (Contemporary Mathematics

223), American Mathematical Society; 1999. p. 109–43.
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