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Abstract—The broad goals of verifiable visualization rely upon correct algorithmic implementations. We extend a framework for

verification of isosurfacing implementations to check topological properties. Specifically, we use stratified Morse theory and digital

topology to design algorithms which verify topological invariants. Our extended framework reveals unexpected behavior and even

coding mistakes in popular publicly-available isosurface codes.

Index Terms—verifiable visualization, isosurface, topology.

✦

1 INTRODUCTION

Visualization is an important aspect of current large-scale
data analysis. Users of such scientific software are not
typically visualization experts. These users might not be
aware of limitations and properties of the underlying
algorithms and visualization techniques. As visualization
researchers and practitioners, it is our responsibility to
ensure that these limitations and properties are clearly stated
and studied. Moreover, we should provide mechanisms
which attest to the correctness of visualization systems.
Unfortunately, the accuracy, reliability and robustness of
visualization algorithms and their implementations have
not in general fallen under such scrutiny as have other
components of the scientific computing pipeline.

The main goal of verifiable visualization is to increase
confidence in visualization tools [19]. Verifiable visualization
tries to develop systematic mechanisms for identifying and
correcting errors in both algorithms and implementations
of visualization techniques. As an example, consider a
recent scheme to check geometrical properties of isosur-
face extraction [15]. By writing down easily checkable
convergence properties that the programs should exhibit, the
authors identified bugs in isosurfacing codes that had gone
undetected.

We strive for verification tools which are both simple and
effective. Simple verification methods are less likely to have
bugs themselves, and effective methods make it difficult
for bugs to hide. Alas, the mathematical properties of an
algorithm and its implementation are both constructs of
fallible human beings, and so perfection is an unattainable
goal; there will always be the next bug. Verification is,
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fundamentally, a process. Even when verification finds
problems with an algorithm or its implementation, we can
only claim that the new implementation behaves more
correctly than the old one. Nevertheless, the verification
process clarifies how the implementations fail or succeed.

In this paper, we investigate isosurfacing algorithms and
implementations, and focus on their topological properties.
For brevity, we will use the general phrase “isosurfacing”
when we refer to both isosurfacing algorithms and their
implementations. As a simple example, the topology of the
output of isosurface codes should match that of the level
set of the scalar field (as discussed in Section 3). Broadly
speaking, we use the method of manufactured solutions
(MMS) to check these properties. By manufacturing a
model whose known behavior should be reproduced by
the techniques under analysis, MMS can check whether
they meet the expectations.

Etiene et al. have recently used this method to verify
geometrical properties of isosurfacing codes [15], and
topological verification follows naturally. An important
contribution of this paper is the selection of significant
topological characteristics that can be verified by software
methods. We use results from two fields in computational
topology, namely digital topology and stratified Morse
theory.

In summary, the main contributions of this work can be
stated as follows:

1) In the spirit of verifiable visualization, we introduce
a methodology for checking topological properties
of publicly and commercially available isosurfacing
software.

2) We show how to adapt techniques from digital
topology to yield simple and effective verification
tools for isosurfaces without boundaries.

3) We introduce a simple technique to compute the Euler
characteristic of a level set of a trilinearly interpolated
scalar field. The technique relies on stratified Morse
theory, and allows us to verify topological properties
of isosurfaces with boundaries.

4) We propose a mechanism to manufacture isosurfaces
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with non-trivial topological properties, and show that
this simple mechanism effectively stresses isosurfacing
programs. We assume as input a piecewise trilinear
scalar field defined on a regular grid.

The verification process produces a comprehensive record of
the desired properties of the implementations, along with an
objective assessment of whether these properties are satisfied.
This record improves the applicability of the technique and
increases the value of visualization. We present a set of
results obtained using our method, and report errors in two
publicly-available isosurface extraction codes.

2 RELATED WORK
The literature comparing and evaluating isosurface extraction
techniques is enormous, with works ranging from mesh
quality [12], [34], [37] to performance [40] and accuracy
analysis [33], [43]. In this section, we focus on methods
which deal with topological issues that naturally appear in
isosurfacing.

Topology-aware Isosurfacing. Arguably the most pop-
ular isosurface extraction technique, Marching Cubes [23]
(MC) processes one grid cell at a time and uses the signs
of each grid node (whether the scalar field at the node
is above or below the isovalue) to fit a triangular mesh
that approximates the isosurface within the cell. As no
information besides the signs is taken into account, Marching
Cubes cannot guarantee any topological equivalence between
the triangulated mesh and the original isosurface. In fact, the
original Marching Cubes algorithm would produce surfaces
with “cracks”, caused by alternating vertex signs along a
face boundary which lead to contradicting triangulations
in neighboring cells [31]. Disambiguation mechanisms can
ensure crack-free surfaces, and many schemes have been
proposed, such as the one by Montani et al. [26], domain
tetrahedralization [4], preferred polarity [2], gradient-based
method [41], and feature-based schemes [18]. The survey of
Newman and Yi has a comprehensive account [29]. Although
disambiguation prevents cracks in the output, it does not
guarantee topological equivalence.

Topological equivalence between the resulting triangle
mesh and the isosurface can only be achieved with additional
information about the underlying scalar field. Since function
values on grid nodes are typically the only information
provided, a reconstruction kernel is assumed, of which
trilinear reconstruction on regular hexahedral grids is the
most popular [30]. Nielson and Hamann, for example,
use saddle points of the bilinear interpolant on grid cell
faces [31]. Their method cannot always reproduce the
topology of trilinear interpolation because there remains am-
biguities internal to a grid cell: pairs of non-homeomorphic
isosurfaces could be homeomorphic when restricted to the
grid cell faces. That problem has been recognized by Natara-
jan [28] and Chernyaev [8], leading to new classification
and triangulation schemes. This line of work has inspired
many other “topology-aware” triangulation methods, such
as Cignoni et al.’s reconstruction technique [9]. Subsequent
work by Lopes and Brodlie [22] and Lewiner et al. [21] has
finally provided triangulation patterns covering all possible

topological configurations of trilinear functions, implicitly
promising a crack-free surface. The topology of the level
sets generated by trilinear interpolation has been recently
studied by Carr and Snoeyink [5] and Carr and Max [3]. A
discussion about these can be found in Section 4.2.

Verifiable Visualization. Many of the false steps in
the route from the original MC algorithm to the recent
homeomorphic solutions could have been avoided with
a systematic procedure to verify the algorithms and the
corresponding implementations. Although the lack of veri-
fication of visualization techniques and the corresponding
software implementations has been a long term concern of
the visualization community [16], [19], concrete proposals
on verification are relatively recent. Etiene et al. [15] were
among the first in scientific visualization to propose a
practical verification framework for geometrical properties
of isosurfacing. Their work is based on the method of
manufactured solutions (MMS), a popular approach for
assessing numerical software [1]. We are interested in
topological properties of isosurfacing, and we also use MMS
as a verification mechanism. As we will show in Section 6,
our proposed technique discovered problems in popularly
used software, supporting our assertion about the value of
a broader culture of verification in scientific visualization.

There have been significant theoretical investigations in
computational topology dealing with, for example, iso-
surface invariants, persistence, and stability [10], [13].
This body of work is concerned with how to define and
compute topological properties of computational objects.
We instead develop methods which stress topological
properties of isosurfacing. These goals are complementary.
Computational topology tools for data analysis might offer
new properties which can be used for verification purposes,
and verification tools can be used to assess the correctness of
the computational topology implementations. Although the
mechanism we propose to compute topological invariants
for piecewise smooth scalar fields is, to the best of our
knowledge, novel (see Section 4.2), our primary goal is to
present a method that developers can adapt to assess their
own software.

3 VERIFYING ISOSURFACE TOPOLOGY
We now discuss strategies for verifying topological proper-
ties of isosurfacing techniques. We start by observing that
simply stating the desired properties of the implementation
is valuable. Consider a typical implementation of Marching
Cubes. How would you debug it? Without a small set of
desired properties, we are mostly limited to inspecting the
output, by explicitly exercising every case in the case table.
The fifteen cases might not seem too daunting, but what
if we suspect a bug in symmetry reduction? We now have
256 cases to check. Even worse, what if the bug is in
a combination of separate cases along neighboring cells?
The verification would grow to be at least as complicated
as the original algorithm, and we would just as likely
make a mistake during the verification as we would in
the implementation. What we need are properties which are
simple to state, easy to check, and good at catching bugs.
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Simple example. Although the previously mentioned
problem with Marching Cubes [23] and cracks is well-
known, it is not immediately clear what topological proper-
ties fail to hold. For example, “the output of Marching Cubes
cannot contain boundary curves” is not one such property,
for two reasons. First, some valid surfaces generated by
Marching Cubes – such as with the simple 23 case – do
contain boundaries. Second, many incorrect outputs might
not contain any boundaries at all. The following might
appear to be a good candidate property: “given a positive
vertex v0 and a negative vertex v1, any path through the
scalar field should intersect the isosurface an odd number
of times”. This property does capture the fact that the
triangle mesh should separate interior vertices from exterior
vertices, and seems to isolate the problem with the cracks.
Checking this property, on the other hand, and even stating
it precisely, is problematic. Geometrical algorithms for
intersection tests are notoriously brittle; for example, some
paths might intersect the isosurface in degenerate ways. A
more promising approach comes from noticing that any such
separating isosurface has to be a piecewise-linear manifold,
whose boundary must be a subset of the boundary of the
grid. This directly suggests that “the output of Marching
Cubes must be a piecewise-linear (PL) manifold whose
boundaries are contained in the boundary of the grid”. This
property is simple to state and easy to test: the link of
every interior vertex in a PL manifold is topologically a
circle, and the link of every boundary vertex is a line. The
term “consistency” has been used to describe problems with
some algorithms [29]. In this paper, we say that the output
of an algorithm is consistent if it obeys the PL manifold
property above. By generating arbitrary grids and extracting
isosurfaces with arbitrary isovalues, the inconsistency of
the original case table becomes mechanically checkable,
and instantly apparent. Some modifications to the basic
Marching Cubes table, such as using Nielson and Hamann’s
asymptotic decider [31], result in consistent implementations,
and the outputs pass the PL manifold checks (as we will
show in Section 6).

The example we have presented above is a complete
instance of the method of manufactured solutions. We
identify a property that the results should obey, run the
implementations on inputs, and test whether the resulting
outputs respect the properties. In the next sections, we
develop a verification method for algorithms to reproduce
the topology of the level sets of trilinear interpolation [8],
[22], [30], thus completely eliminating any ambiguity. In
this paper, we say the output is correct if it is homeomorphic
to the corresponding level set of the scalar field. This
correctness property is simple to state, but developing
effective verification schemes that are powerful and simple
to implement is more involved. We will turn to invariants
of topological spaces, in particular to Betti numbers and
the Euler characteristic, discuss their relative strengths and
weaknesses, and how to robustly check their values. Figure 1
shows our pipeline to assess topological correctness and
also the paper organization.

Fig. 1. Overview of our topology verification pipeline.

First step, we generate a random trilinear field and

extract a random isosurface using the implementation

under verification. We then compute the expected topo-

logical invariants from the trilinear field and compare

them against the invariants obtained from the mesh.

We provide two simple ways to compute topological

invariants from a trilinear field based on digital topology

(DT) or stratified Morse theory (SMT).

4 MATHEMATICAL TOOLS

This section describes the mathematical machinery used to
derive the topology verification tools. More specifically,
we provide a summary of the results we need from
digital topology and stratified Morse theory. A detailed
discussion on digital topology can be found in Stelldinger
et al.’s paper [39], and Goresky and MacPherson give a
comprehensive presentation of stratified Morse theory [17].

In Section 4.1 we describe a method based on digital
topology, which operates on manifold surfaces without
boundaries and determines the Euler characteristic and Betti
numbers of the level sets. A more general setting of surfaces
with boundaries is handled with tools derived from stratified
Morse theory, detailed in Section 4.2. The latter method
can only determine the Euler characteristic of the level set.

Let us start by recalling the definition and some properties
of the Euler characteristic, which we denote by χ . For a com-
pact 2-manifold M , χ(M ) =V −E +F , where V , E and
F are the number of vertices, edges and faces of any finite
cell decomposition of M . If M is a connected orientable
2-manifold without boundary, χ(M ) = 2−2g(M ), where
g(M ) is the genus of M . The Euler characteristic may
also be written as χ(M ) = ∑n

i=0(−1)iβi, where βi are the
Betti numbers: the rank of the i-th homology group of M .
Intuitively, for 2-manifolds, β0, β1 and β2 correspond to the
number of connected components, holes and voids (regions
of the space enclosed by the surface) respectively. If M has
many distinct connected components, that is, M =

�n
i=1 M

i

and M
i �

M
j = /0 for i �= j then χ(M ) = ∑n

i χ(M i). More
details about Betti numbers, the Euler characteristic and
homology groups can be found in Edelsbrunner and Harer’s
text [13]. The Euler characteristic and the Betti numbers
are topological invariants: two homeomorphic topological
spaces will have the same Euler characteristic and Betti
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Fig. 2. The four distinct groups of vertices O,F,E,C, are

depicted as black, blue, green and red points. They are

the “Old”, “Face”, “Edge” and “Corner” points of a voxel

region VG (semitransparent cube) respectively. For the

sake of clarity, we only show a few points.

numbers whenever these are well-defined.

4.1 Digital topology

Let G be an n× n× n cubic regular grid with a scalar
e(s) assigned to each vertex s of G and t : R3 → R be
the piecewise trilinear interpolation function in G , that is,
t(x) = ti(x), where ti is the trilinear interpolant in the cubic
cell ci containing x. Given a scalar value α , the set of points
satisfying t(x) = α is called the isosurface α of t. In what
follows, t(x) = α will be considered a compact, orientable
2-manifold without boundary. We say that a cubic cell ci
of G is unambiguous if the following two conditions hold
simultaneously:

1) any two vertices sa and sb in ci for which e(sa)< α
and e(sb)< α are connected by negative edges, i. e.,
a sequence of edges sas1,s1s2, . . . ,sksb in ci whose
vertices satisfy e(si)< α for i = 1, . . . ,k and

2) any two vertices sc and sd in ci for which e(sc)> α
and e(sd)> α are connected by positive edges, i. e.,
a sequence of edges scs1,s1s2, . . . ,slsd in ci whose
vertices satisfy e(si)> α for i = 1, . . . , l.

In other words, a cell is unambiguous if all positive vertices
form a single connected component via the positive edges
and, conversely all negative vertices form a single connected
component by negative edges [41]. If either property fails
to hold, ci is called ambiguous. The top row in Figure 3
shows all possible unambiguous cases.

The geometric dual of G is called the voxel grid associated
with G , denoted by VG . More specifically, each vertex s
of G has a corresponding voxel vs in VG , each edge of G

corresponds to a face in VG (and vice versa), and each cubic
cell in G corresponds to a vertex in VG , as illustrated in
Figure 2. Each voxel vs can also be seen as the Voronoi
cell associated to s. Scalars defined in the vertices of G can
naturally be extended to voxels, thus ensuring a single scalar
value e(vs) to each voxel vs in VG defined as e(s) = e(vs). As
we shall show in the following, the voxel grid structure plays
an important role when using digital topology to compute
topological invariants of a given isosurface. Before showing
that relation, though, we need a few more definitions.

Denote by G
� the 2n×2n×2n regular grid obtained from

a refinement of G . Vertices of G
� can be grouped in four

distinct sets, denoted by O, F , E, C. The set O contains the
vertices of G

� that are also vertices of G . The sets F and E
contain the vertices of G

� lying on the center of faces and

edges of the voxel grid VG , respectively. Finally, C contains
all vertices of VG . Figure 2 illustrates these sets.

Consider now the voxel grid VG � dual to the refined grid
G

�. Given a scalar value α , the digital object Oα is the
subset of voxels v in VG � such that v ∈ Oα if at least one
of the criteria below are satisfied:

• v ∈ O and e(v)≤ α
• v ∈ F and both neighbors of v in O have scalars less

than (or equal to) α
• v ∈ E and at least 4 of the 8 neighbors of v in O∪F

have scalars less than (or equal) α
• v ∈ C and at least 12 of the 26 neighbors of v in

O∪F ∪E have scalars less than (or equal) α
The description above is called Majority Interpolation (MI)
(Figure 5) and it allows us to compute the voxels that belong
to a digital object Oα . The middle row of Figure 3 shows
all possible cases for voxels picked by the MI algorithm
(notice the correspondence with the top row of the same
figure).

The importance of Oα is two-fold. First, the boundary
surface of the union of the voxels in Oα , denoted by
∂Oα and called a digital surface, is a 2-manifold (See
the proof by Stelldinger et al. [39]). Second, the genus of
∂Oα can be computed directly from Oα using the algorithm
proposed by Chen and Rong [7] (Figure 4). As the connected
components of Oα can also be easily computed and isolated,
one can calculate the Euler characteristic of each connected
component of Oα from the formula χ = 2−2g and thus β0,
β1, and β2.

The voxel grid VG � described above allows us to compute
topological invariants for any digital surface ∂Oα . However,
we so far do not have any result relating ∂Oα to the isosur-
face t(x) = α . The next theorem provides the connection.

Theorem 4.1. Let G be a n× n× n rectilinear grid with
scalars associated with each vertex of G and t be the
piecewise trilinear function defined on G such that the
isosurface t(x) = α is a 2-manifold without boundary. If no
cubic cell of G is ambiguous with respect to t(x) = α then
∂Oα is homeomorphic to the isosurface t(x) = α .

Proof: Given a cube ci ⊂ G and an isosurface t =
{x | t(x) = α}, let ti = t ∩ ci. Similarly, denote

∂Oi = clR3 ((∂Oα ∩ ci)−∂ci) .

We note that ∂O is a 2-manifold [35], [39]. There are two
main parts to the proof presented here. For each i,

1) the 2-manifolds ti and ∂Oi are homeomorphic; and
2) both ti and ∂Oi cut the same edges and faces of ci.
Since t is trilinear, no level-set of t can intersect an edge

more than once. Hence, if ci is not ambiguous, ti is exactly
one of the cases 1 to 7 in the top row of Figure 3 [22],
either a topological disk or the empty set. Each case in the
top row of Figure 3 is the unambiguous input for the MI
algorithm to produce the voxel reconstruction show in the
middle row, where the boundaries of each of these voxel
reconstructions are shown in the bottom row. By inspection,
we can verify that the boundary of the digital reconstruction
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Fig. 3. An illustration of the relation between unambiguous isosurfaces of trilinear interpolants and the

corresponding digital surfaces. The top row shows all possible configurations of the intersection of t = α with a

cube c j for unambiguous configurations [22]. Each red dot si denotes a vertex withs e(si)< α . Each image on the

top right is the complement c̄i of cases 1 to 4 on the left (cases 5 to 7 were omitted because the complement

is identical to the original cube up to symmetry). The middle row shows the volume reconstructed by Majority

Interpolation (MI) for configurations 1 to 7 (left) and the complements (right) depicted in the top row. Bottom

row shows the boundary of the volume reconstructed by the MI algorithm (The role of faces that intersect ci
is explained in the proof of Theorem 4.1). Notice that all surfaces in the top and bottom rows are topological

disks. For each cube configuration, the boundary of each digital reconstruction (bottom row) has the same set of

positive/negative components as the unambiguous configurations (top row).

∂Oi (bottom row of Figure 3) is also a disk for all possible
unambiguous cases and complement cases. Hence, for each
i, the 2-manifolds ∂Oi and ti are homeomorphic. Then, for
each i, both ∂Oi and ti cut the same set of edges and faces of
ci. Again, we can verify this for all possible i by inspecting
the top and bottom rows in Figure 3, respectively. Finally, we
apply the Pasting Lemma [27] across neighboring surfaces
∂Oi and ∂O j in order to establish the homeomorphism
between ∂Oα and t. ✷

This proof provides a main ingredient for the verification
method in Section 5. Crucially, we will show how to
manufacture a complex solution that unambiguously crosses
every cubic cell of the grid. Since we have shown the
conditions for which the digital surfaces and the level sets
are homeomorphic, any topological invariant will have to
be the same for both surfaces.

GENUSFROMDS(∂Oα)

1 ✄ Let ∂Oα be a 2-manifold without boundary
2 ✄ Let |Ni| be the number of surface points with

exactly i neighbors.
3 ✄ Let g be the surface genus
4 g = 1+(|N5|+2|N6|− |N3|)/8
5 return g

Fig. 4. A simple formula for genus computation.

4.2 Stratified Morse Theory
The mathematical developments presented above allow
us to compute the Betti numbers of any isosurface of
the piecewise trilinear interpolant. However, they require
isosurfaces without boundaries. In this section, we provide a
mechanism to compute the Euler characteristic of any regular
isosurface of the piecewise trilinear interpolant through an
analysis based on critical points, which can be used to

MAJORITYINTERPOLATION(G ,α)

1 ✄ Let O, F , E and C be the subset of vertices
in G

� as described in subsection 4.1.
2 ✄ Let N (s,�) be the set of neighbors of s ∈ G

� in the
set �, where �= {O,F,E,C}, with associate scalar
less than α

3 for s ∈ G
�

4 do if s ∈ O or
5 s ∈ F and |N (s,O)|= 2 or
6 s ∈ E and |N (s,O)+N (s,F)|� 4 or
7 s ∈ C and |N (s,O)+N (s,F)+N (s,E)|� 12
8 then Select voxel vs
9 return Oα

Fig. 5. Voxel selection using Majority Interpolation (MI).

verify properties of isosurfaces with boundary components.
We will use some basic machinery from stratified Morse
theory (SMT), following the presentation of Goresky’s
monograph [17].

Let f for now be a smooth function with isolated critical
points p, where ∇ f (p) = 0. From classical Morse theory,
the topology of two isosurfaces f (x) = α and f (x) = α +ε
differs only if the interval [α,α + ε] contains a critical
value ( f (p) is a critical value iff p is a critical point).
Moreover, if εp is a small neighborhood around p and L−(p)
and L+(p) are the subset of points in the boundary of εp
satisfying f (x)< f (p) and f (x)> f (p) respectively, then
the topological change from the isosurface f (x) = f (p)− ε
to f (x) = f (p)+ε is characterized by removing L−(p) and
attaching L+(p). Thus, changes in the Euler characteristic,
denoted by ∆χ(p), are given by:

∆χ(p) = χ(L+(p))−χ(L−(p)). (4.1)

For a smooth function f , the number of negative eigenvalues
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Fig. 6. An illustration of a piecewise-smooth immersed

2-manifold. The colormap illustrates the value of each

point of the scalar field. Notice that although the

manifold itself is not everywhere differentiable, each

stratum is itself an open manifold that is differentiable.

of the Hessian matrix determines the index of a critical point
p, and the four cases give the following values for χ(L−(p))
and χ(L+(p)):

min saddle-1 saddle-2 max
χ(L−(p)) 0 2 0 2
χ(L+(p)) 2 0 2 0

The above formulation is straightforward but unfortunately
cannot be directly applied to functions appearing in ei-
ther piecewise trilinear interpolations or isosurfaces with
boundary, both of which appear in some of the isosurfacing
algorithms with guaranteed topology. Trilinear interpolants
are not smooth across the faces of grid cells, so the gradient
is not well-defined there. Identifying the critical points
using smooth Morse theory is then problematic. Although
arguments based on smooth Morse theory have appeared
in the literature [42], there are complications. For example,
the scalar field in a node of the regular grid might not
have any partial derivatives. Although one can still argue
about the intuitive concepts of minima and maxima around
a non-differentiable point, configurations such as saddles
are more problematic, since their topological behavior is
different depending on whether they are on the boundary
of the domain. It is important, then, to have a mathematical
tool which makes predictions regardless of the types of
configurations, and SMT is one such theory.

Intuitively, a stratification is a partition of a piecewise-
smooth manifold such that each subset, called a stratum, is
either a set of discrete points or has smooth structure. In a
regular grid with cubic cells, the stratification we propose
will be formed by four sets (the strata), each one a (possibly
disconnected) manifold. The vertex set contains all vertices
of the grid. The edge set contains all edge interiors, the
face set contains all face interiors, and the cell set contains
all cube interiors. We illustrate the concept for the 2D case
in Figure 6. The important property of the strata is that the
level sets of f restricted to each stratum are smooth (or lack
any differential structure, as in the vertex-set). In SMT, one
applies standard Morse theory on each stratum, and then
combines the partial results appropriately.

The set of points with zero gradient (computed on each
stratum), which SMT assumes to be isolated, are called the
critical points of the stratified Morse function. In addition,
every point in the vertex set is considered critical as well.
One major difference between SMT and the smooth theory is
that some critical points do not actually change the topology
of the level sets. This is why considering all grid vertices as

critical does not introduce any practical problems: most grid
vertices of typical scalar fields will be virtual critical points,
i.e., points which do not change the Euler characteristic of
the surface. Carr and Snoeyink use a related concept (which
they call “potential critical points”) in their state-machine
description of the topology of interpolants [5].

Let M be the stratified grid described above. It can be
shown that if p is a point in a d-dimensional stratum of
M , it is always possible to find a (3 − d)-dimensional
submanifold of M (which might straddle many strata)
that meets transversely the stratum containing p, and
whose intersection consists of only p (one way to think
of this (3− d)-manifold is as a “topological orthogonal
complement”). In this context, we can define a small
neighborhood Tε(p) in the strata containing p and the
lower tangential link T−

L (p) as the set of points in the
boundary of Tε(p) with scalar values less than that in p.
Similarly we can define the upper tan-
gential link T+

L (p) as the set of points
in the boundary of Tε(p) with scalar
value higher than that at p. Lower nor-
mal N−

L (p)) and upper normal N+
L (p))

links are analogous notions, but the
lower and upper links are taken to be
subsets of Nε(p), itself a subset of the
(3−d)-dimensional submanifold transverse to the stratum
of p going through p. The definitions above are need in
order to define the lower stratified link and upper stratified
link, as follows: given Tε(p), T−

L (p), Nε(p) and N−
L (p), the

lower stratified Morse link (and similarly for upper stratified
link) is given by

L−(p) = (Tε(p)×N−
L (p))∪ (Nε(p)×T−

L (p)). (4.2)

These definitions allow us to classify critical points even in
the non-smooth scenario. They let us compute topological
changes with the same methodology used in the smooth
case. In other words, when a scalar value α crosses a
critical value αp in a critical point p, the topological change
in the isosurface is characterized by removing L−(p) and
attaching L+(p), affecting the Euler characteristic as defined
in Equation 4.1.

The remaining problem is how to determine χ(L−(p))
and χ(L+(p)). Recalling that χ(A∪B) = χ(A)+ χ(B)−
χ(A∩B), χ(A×B) = χ(A)χ(B), and χ(Tε) = χ(Nε) = 1
(we are omitting the point p) we have:

χ(L−) = χ(Tε ×N−
L ∪Nε ×T−

L )
= χ(N−

L )+χ(T−
L )−χ(Tε ×N−

L ∩Nε ×T−
L )

(4.3)

Now, we can define Tε = T−
L ∪Tr, T−

L ∩Tr = /0 and similarly
for Nε and N−

L . Then, expand the partitions and products,
and distribute the intersections around the unions, noticing
all but one of intersections will be empty:

Tε ×N−
L ∩Nε ×T−

L = ((Tr ∪T−
L )×N−

L )∩ ((Nr ∪N−
L )×T−

L )

= ((Tr ×N−
L )∪ (T−

L ×N−
L ))∩

((Nr ×T−
L )∪ (N−

L ×T−
L ))

= N−
L ×T−

L
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Therefore:

χ(Tε ×N−
L ∩Nε ×T−

L ) = χ(N−
L ×T−

L )

= χ(N−
L )χ(T−

L )

which gives the final result

χ(L−) = χ(N−
L )+χ(T−

L )−χ(N−
L )χ(T−

L ). (4.4)

The same result is valid for χ(L+), if we replace the
superscript ‘−’ by ‘+’ in Equation 4.4. If T−

L or T+
L are

one-dimensional, then we are done. If not, then we can
recursively apply the same equation to T−

L and T+
L and look

at progressively lower-dimensional strata until we reach
Tε(p) and Nε(p) given by 1-disks. The lower and upper
links for these 1-disks will always be discrete spaces with
zero, one or two points, for which χ is simply the cardinality
of the set.

In some cases, the Euler characteristic of the lower and
upper link might be equal. Then, χ(L−(p))= χ(L+(p)), and
∆χ(p) = 0. These cases correspond to the virtual critical
points mentioned above. Critical points in the interior of
cubic cells are handled by the smooth theory, since in
that case that the normal Morse data is 0-dimensional.
This implies that the link will be an empty set with Euler
characteristic zero. So, by Equation 4.4, χ(L−) = χ(T−

L ).
Because the restriction of the scalar field to a grid edge is
a linear function, no critical point can appear there. As a
result, the new cases are critical points occurring at vertices
or in the interior of faces of the grid. For a critical point
p in a vertex, stratification can be carried out recursively,
using the edges of the cubes meeting in p as tangential and
normal submanifolds. Denoting by nl1,nl2,nl3 the number
of vertices adjacent to p with scalar value less than that
of p in each Cartesian coordinate direction, Equation (4.4)
gives:

χ(L−(p)) = nl1 +nl2 +nl3 −nl1(nl2 +nl3) (4.5)

χ(L+(p)) can be computed similarly, but considering the
number of neighbors of p in each Cartesian direction with
scalars higher than that of p.

If p is a critical point lying in a face r of a cube, we
consider the face itself as the tangential submanifold and
the line segment r⊥ orthogonal to r through p the normal
submanifold. Recursively, the tangential submanifold can
be further stratified in two 1-disks (tangential and normal).
Denote by nl the number of ends of r⊥ with scalar value
less than that of p. Also, recalling that the critical point
lying in the face r is necessarily a saddle, thus having two
face corners with scalar values less and two higher than
that of p, Equation (4.4) gives:

χ(L−(p)) = nl +2−2nl (4.6)

Analogously, we can compute χ(L+(p)) = nu + 2− 2nu
where nu is the number of ends of r⊥ with scalar value
higher than that of p.

A similar analysis can be be carried out for every type of
critical point, regardless of whether the point belongs to the
interior of a grid cell (and so would yield equally well to a

smooth Morse theory analysis), an interior face, a boundary
face, or a vertex of any type. The Euler characteristic χα
of any isosurface with isovalue α is simply given as:

χα = ∑
pi∈Cα

∆χ(pi) (4.7)

where Cα is the set of critical points with critical values
less than α .

It is worth mentioning once again that, to the best of our
knowledge, no other work has presented a scheme which
provides such a simple mechanism for computing the Euler
characteristic of level sets of piecewise-smooth trilinear
functions. Compare, for example, the case analyses and state
machines performed separately by Nielson [30], by Carr
and Snoeyink [5] and by Carr and Max [3]. In contrast, we
can recover an (admittedly weaker) topological invariant by
a much simpler argument. In addition, this argument already
generalizes (trivially because of the stratification argument)
to arbitrary dimensions, unlike the other arguments in the
literature.

5 MANUFACTURED SOLUTION PIPELINE
We now put the pieces together and build a pipeline
for topology verification using the results presented in
Section 4. In the following sections, the procedure called
ISOSURFACING refers to the isosurface extraction technique
under verification. INVARIANTFROMMESH computes topo-
logical invariants of a simplicial complex.

5.1 Consistency
As previously mentioned, MC-like algorithms which use
disambiguation techniques are expected to generate PL
manifold isosurfaces no matter how complex the function
sampled in the vertices of the regular grid. In order to
stress the consistency test we generate a random scalar field
with values in the interval [−1,1] and extract the isosurface
with isovalue α = 0 (which is all but guaranteed not to
be a critical value) using a given isosurfacing technique,
subjecting the resulting triangle mesh to the consistency
verification. This process is repeated a large number of
times. If the implementation fails to produce PL manifolds
for all cases, then the counterexample provides a documented
starting point for debugging. If it passes the tests, we
consider the implementation verified.

5.2 Verification using Stratified Morse Theory
We can use the formulation described in Section 4.2
to verify isosurfacing programs which promise to match
the topology of the trilinear interpolant. The SMT-based
verification procedure is summarized in Figure 7. The
algorithm has four main steps. A random scalar field
with node values in the interval [−1,1] is initially created.
Representing the trilinear interpolation in a grid cell by
f (x,y,z) = axyz + bxy + cxz + dyz + ex + f y + gz + h, the
internal critical points are given by:

tx = (d∆x ±
�

∆x∆y∆z)/(a∆x)
ty = (c∆y ±

�
∆x∆y∆z)/(a∆y)

tz = (b∆z ±
�

∆x∆y∆z)/(a∆z),
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MMS-SMT(G )

1 ✄ Let the input G be n×n×n rectilinear grid
2 for i ← 1 to #tests
3 do G ← randomly sampled n×n×n grid
4 CPs ← COMPUTECRITICALPOINTS(G )
5 if p ∈CPs is degenerate or
6 p is an internal saddle close to edges or faces
7 then GOTO 3
8 else K ← ISOSURFACING(G )
9 (χv)i ← INVARIANTFROMCPS(G )

10 (χk)i ← INVARIANTFROMMESH(K)
11 Compare (χv)i and (χk)i

Fig. 7. Overview of the method of manufactured

solutions (MMS) using stratified Morse theory. INVARI-
ANTFROMCPS is computed using Equation 4.7. The

method either fails to match the expected topology,

in which case G is provided as a counterexample, or

succeeds otherwise.

where ∆x = bc−ae, ∆y = bd−a f , and ∆z = cd−ag. Critical
points on faces of the cubes are found by setting x,y or
z to either 0 or 1, and solving the quadratic equation. If
the solutions lie outside the unit cube [0,1]3, they are not
considered critical points, since they lie outside the domain
of the cell. The scalar field is regenerated if any degenerate
critical point is detected (these can happen if either the
random values in a cubic cell have, by chance, the same
value or when ∆x, ∆y or ∆z are zero). In order to avoid
numerical instabilities we also regenerate the scalar field
locally if any internal critical point lies too close to the
border of the domain (that is, to an edge or to a face of the
cube).

The third step computes the Euler characteristic of a
set of isosurfaces with random isovalues in the interval
[−1,1] using the theory previously described, jointly with
Equation 4.7. In the final step, the triangle mesh M approxi-
mating the isosurfaces is extracted using the algorithm under
verification, and χ(M) = V (M)− E(M) + F(M), where
V (M),E(M), and F(M) are the number of vertices, edges,
and triangles. If the Euler characteristic computed from the
mesh does not match the one calculated via Equation 4.7,
the verification fails. We carry out the process a number
of times, and implementations that pass the tests are less
likely to contain bugs.

5.3 Verification using Digital Topology
Figure 9 shows the verification pipeline using the MI
algorithm, and Figure 8 depicts the refinement process.
Once again a random scalar field, with potentially many
ambiguous cubes, is initially generated in the vertices of a
grid G . The algorithm illustrated in Figure 9 is applied to
refine G so as to generate a new grid G̃ which does not have
ambiguous cells. If the maximum number of refinement is
reached and ambiguous cells still remain then the process
is restarted from scratch. Notice that cube subdivision does

Fig. 8. Our manufactured solution is given by t(x) = α.

G is depicted in solid lines while G̃ is shown in dashed

lines. G̃ is a uniform subdivision of G . The trilinear

surfaces ti are defined for each cube ci ∈ G and

resampled in c�j ∈ G̃ . The cubes in the center of G have

four maxima each (left) and thus induce complicated

topology. The final isosurface may have several tunnels

and/or connected components even for coarse G (right).

MMS-DS(G )

1 ✄ Let the input G be a n×n×n rectilinear grid
2 for i ← 1 to #tests
3 do G ← randomly sampled n×n×n grid
4 G̃ ← REFINEANDRESAMPLE(G )
5 if G̃ has ambiguous cubes
6 then GOTO 3
7 O ← MAJORITYINTERPOLATION(G̃ )
8 K ← ISOSURFACING(G )
9 (β v

0 ,β v
1 ,β v

2 )i ← INVARIANTFROMDS(∂O)
10 (β k

0 ,β k
1 ,β k

2 )i ← INVARIANTFROMMESH(K)
11 Compare (β v

0 ,β v
1 ,β v

2 )i and (β k
0 ,β k

1 ,β k
2 )i

Fig. 9. Overview of the method of manufactured

solutions (MMS) using digital topology. The method

either fails to match the expected topology, in which

case G is provided as a counterexample, or succeeds

otherwise.

not need to be uniform. For instance, each cube may be
refined using a randomly placed new node point or using
ti’s critical points, and the result of the verification process
still holds. This is because Theorem 4.1 only requires ci to
be unambiguous. For simplicity, in this paper we refine G

uniformly doubling the grid resolution in each dimension.

Scalars are assigned to the new vertices of G̃ (the ones
not in G ) by trilinearly interpolating from scalars in G ,
thus ensuring that G and G̃ have exactly the same scalar
field [30]. As all cubic cells in G̃ are unambiguous, Theorem
4.1 guarantees the topology of the digital surface ∂Oα
obtained from G̃ is equivalent to that of t(x) =α . Algorithm
INVARIANTFROMDS computes topological invariants of
∂Oα using the scheme discussed in Section 4.1. In this
context, INVARIANTFROMDS is the algorithm illustrated in
Figure 4. Surfaces with boundary are avoided by assigning
the scalar value 1 to every vertex in the boundary of G .
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6 EXPERIMENTAL RESULTS

In this section we present the results of applying our
topology verification methodology to a number of different
isosurfacing techniques, three of them with topological
guarantees with respect to trilinear interpolant. Specifically,
the techniques are:

VTKMC [38] is the Visualization Toolkit (VTK) im-
plementation of the Marching Cubes algorithm with the
implicit disambiguation scheme proposed by Montani et al.
[26]. Essentially, it separates positive vertices when a face
saddle appears and assumes no tunnels exists inside a cube.
The proposed scheme is topologically consistent but it does
not reproduce the topology of the trilinear interpolant.

Marching Cubes with Edge Transformations or MACET
[12] is a Marching Cubes based technique designed to
generate triangle meshes with good quality. Quality is
reached by displacing active edges of the grid (edges
intersected by the isosurface), both in normal and tangential
direction toward avoiding “sliver” intersections. Macet does
not reproduce the topology of the trilinear interpolant.

AFRONT [37] is an advancing-front method for isosurface
extraction, remeshing and triangulation of point sets. It
works by advancing triangles over an implicit surface. A
sizing function that takes curvature into account is used to
adapt the triangle mesh to features of the surface. AFRONT
uses cubic spline reconstruction kernels to construct the
scalar field from a regular grid. The algorithm produces
high quality triangle meshes with bounded Hausdorff error.
As occurred with the VTK and Macet implementations,
Afront produces consistent surfaces but, as expected, the
results do not match the trilinear interpolant.

MATLAB� [24] is a high-level language for building
codes that requires intensive numerical computation. It has
a number of features and among them an isosurface extrac-
tion routine for volume data visualization. Unfortunately,
MATLAB documentation does not offer information on
the particularities of the implemented isosurface extraction
technique (e.g., Marching Cubes, Delaunay-based, etc;
consistent or correct).

SNAPMC [34] is a Marching Cubes variant which pro-
duces high quality triangle meshes from regular grids. The
central idea is to extend the original lookup table to account
for cases where the isosurface passes exactly through the grid
nodes. Specifically, an user-controlled parameter dictates
maximum distance for “snap” the isosurface into the grid
node. The authors report an improvement in the minimum
triangle angle when compared to previous techniques.

MC33 was introduced by Chernyaev [8] to solve ambi-
guities in the original MC. It extends Marching Cubes table
from 15 to 33 cases to account for ambiguous cases and
to reproduce the topology of the trilinear interpolant inside
each cube. The original table was later modified to remove
two redundant cases which leads to 31 unique configurations.
Chernyaev’s MC solves face ambiguity using Nielsen and
Hamann’s [31] asymptotic decider and internal ambiguity
by evaluating the bilinear function over a plane parallel to a
face. Additional points may be inserted to reproduce some

configuration requiring subvoxel accuracy. We use Lewiner
et al.’s implementation [21] of Chernyaev’s algorithm.

DELISO [11] is a Delaunay-based approach for isosurface
extraction. It uses the intersection of the 3D Voronoi diagram
and the desired surface to define a restricted Delaunay
triangulation. Moreover, it builds the restricted Delaunay
triangulation without having to compute the whole 3D
Voronoi structure. DELISO has theoretical guarantees of
homeomorphism and mesh quality.

MCFLOW is a proof-of-concept implementation of the
algorithm described in Scheidegger et al. [36]. It works
by successive cube subdivision until it has a simple edge
flow. A cube has a simple edge flow if it has only one
minima and one maxima. A vertex s ∈ ci is a minimum if
all vertices s j ∈ ci connected to it has t(s j)> t(si). Similarly,
a vertex is a maximum if t(s j)< t(si) for every neighbor
vertex j. This property guarantees that the Marching Cubes
method will generate a triangle mesh homeomorphic to the
isosurface. After subdivision, the surfaces must be attached
back together. The final mesh is topologically correct with
respect to the trilinear interpolant.

We believe that the implementation of any of these
algorithms in full detail is non-trivial. The results reported
in the following section support this statement, showing
how complex and error-prone is the coding of isosurfacing
algorithms, and reinforcing the need for robust verification
mechanisms. In what follows, we say that a mismatch occurs
when invariants computed from a verification procedure
disagree with the invariants computed from the isosurfacing
technique. A mismatch does not necessarily mean an
implementation is incorrect, as we shall see later in this
section. After discussions with the developers, however, we
did find that there were bugs in some of the implementations.

6.1 Topology consistency
All implementations were subject to the consistency test
(Section 5.1), resulting in the outputs reported in the first
column of Table 1. We observed mismatches for DELISO,
SNAPMC (with non-zero snap value) and MATLAB imple-
mentations. Now, we detail these results.

6.1.1 DELISO

We analyzed 50 cases where DELISO’s output mismatched
the ground truth produced by MMS and we found that: 1)
28 cases had incorrect hole(s) in the mesh, 2) 15 cases
had missing triangle(s), and 3) 7 cases had duplicated
vertices. These cases are illustrated in Figure 11. The
first problem is possibly due to the non-smooth nature
of the piecewise trilinear interpolant, since in all 28 cases
the holes appeared in the faces of the cubic grid. It is
important to recall that DELISO is designed to reproduce
the topology of the trilinear interpolant inside each grid
cube, but the underlying algorithm requires the isosurface to
be C2 continuous everywhere, which does not hold for the
piecewise trilinear isosurface. In practice, real world datasets
such as medical images may induce “smoother” piecewise
trilinear fields when compared to the extreme stressing from
the random field, which should reduce the incidence of
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such cases. Missing triangles, however, occurred in the
interior of cubic cells where the trilinear surface is smooth.
Those problems deserve a deeper analysis, as one cannot
say beforehand if the mismatches are caused by problems in
the code or numerical instability associated with the initial
sampling, ray-surface intersection, and the 3D Delaunay
triangulation construction.

6.1.2 SNAPMC
Table 1 shows that SNAPMC with non-zero snap value
causes the mesh to be topologically inconsistent (Figure
13(a)) in more the 50% of the performed tests. The reason
for this behavior is in the heart of the technique: the
snapping process causes geometrically close vertices to be
merged together which may eliminate connected components
or loops, join connected components or even create non-
manifold surfaces. This is why there was an increase in
the number of mismatches when compared with SNAPMC
with zero snap value. Since non-manifold meshes are not
desirable in many applications, the authors suggest a post-
processing for fixing these topological issues, although no
implementation or algorithm for this post-processing is
provided.

6.1.3 MATLAB

MATLAB documentation does not specify the properties
of the implemented isosurface extraction technique. Conse-
quently, it becomes hard to justify the results for the high
number of mismatches we see in Table 1. For instance,
Figure 13(b) shows an example of a non-manifold mesh
extracted using MATLAB. In that figure, the two highlighted
edges have more than two faces connected to them and the
faces between these edges are coplanar. Since we do not
have enough information to explain this behavior, this might
be the actual expected behavior or an unexpected side effect.
An advantage of our tests is the record of the observed
behavior of meshes topologies generated by MATLAB.

6.1.4 MACET

In our first tests, MACET failed in all consistency tests
for a 5× 5× 5 grid. An inspection in the code revealed
that the layer of cells in the boundary of the grid was not
been traversed. Once that bug was fixed, MACET started
to produce PL manifold meshes and was successful in the
consistency test, as shown in Table 1.

6.2 Topology correctness
The verification tests described in Section 5.2 and 5.3 were
applied to all algorithms although only MC33, DELISO and
MCFLOW are expected to generate meshes with the same
topology of the trilinear interpolant. Our tests consists of one
thousand random fields generated in a rectilinear 5×5×5
grid G . The verification test using Digital Surfaces demands
a compact, orientable, 2-manifold without boundary, so
we set scalars equal 1 for grid vertices in the boundary
of the grid. As stratified Morse theory supports surfaces
with boundary, no special treatment was employed in the
boundary of G . We decide to run these tests using all

Fig. 10. The horizontal axis shows the case and

subcase numbers for each of the 31 Marching Cubes

configurations described by Lopes and Brodlie [22].

The dark bars show the percentage of random fields

that fits a particular configuration. The light bars show

the percentage of random fields which fit a particular

configuration and do not violate the assumptions of our

manufactured solution. Our manufactured solution hits

all possible cube configurations.

algorithms for completeness and also for testing the tightness
of the theory which says that if the algorithms does not
preserve the topology of the trilinear interpolant a mismatch
should occur. Interestingly, with this test, we were able to
find another code mistake in MACET that prevented it from
terminating safely when SMT procedure is applied. By the
time of the submission of this paper, the problem was not
fixed. For all non topology-preserving algorithms, there was
a high number of mismatches as expected.

One might think that the algorithms described in Figures
7 and 9 do not cover all possible topology configurations
because some scalar fields are eventually discarded (lines 7
and 6 respectively). This could happen due to the presence of
ambiguous cells after refining the input grid to the maximum
tolerance (digital topology test) or critical points falling
too close to edges/faces of the cubic cells (SMT test).
However, we can ensure that all possible configurations
for the trilinear interpolation are still being considered in
the tests. Figure 10 shows the incidence of each possible
configuration (including all ambiguous cases) for the trilinear
interpolation in the generated random fields. Dark bars
correspond to the number of times a specific case happens in
the random field and the light bars show how many of those
cases are accepted by our verification methodology, that is,
the random field is not discarded. Notice that no significant
differences can be observed, implying that our rejection
sampling method does not bias the case frequencies.

Some configurations, such as 13 or 0, have low incidence
rate and therefore might not be sufficiently stressed during
verification. While the trivial case 0 does not pose a
challenge for topology-preserving implementations, con-
figuration 13 has 6 subcases whose level-sets are fairly
complicated [22], [30]. Fortunately, we can build random
fields in a convenient fashion by forcing a few cubes to
represent a particular instance of the table, such as case 13,
producing more focused tests.

Table 1 shows statistics for all implementations. For
MC33, the tests revealed a problem with configuration

Page 10 of 23Transactions on Visualization and Computer Graphics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 11

4, 6 and 13 of the table (ambiguous cases). Figure 12 shows
the obtained and expected tiles for a cube. Contacting the
author, we found that one of the mismatches was due to
a mistake when coding configuration 13 of the MC table.
A non-obvious algorithm detail which is not discussed in
either Chernyaev’s or Lewiner’s work is the problem of
orientation of some of the cube configurations [20]. The
case 13.5.2 shown if Figure 12 (right) is an example of one
such configuration where an additional criterion is required
to decide the tunnel orientation which is lacking in the
original implementation of MC33. This problem was easily
detected by our framework, because the orientation changes
the mesh invariants, and a mismatch occurs.

DELISO presented a high percentage of β0 mismatches
due to the mechanism used for tracking connected com-
ponents. It uses ray-surface intersection to sample a few
points over each connected component of the isosurface
before extracting it. The number of rays is an user-controlled
parameter and its initial position and direction are randomly
assigned. DELISO is likely to extract the biggest connected
component and, occasionally, it misses small components. It
is important to say that the ray-sample based scheme tends
to work fine in practical applications where small surfaces
are not present. The invariant mismatches for β1 and β2 are
computed only if no consistency mismatch happens.

For MCFLOW, we applied the verification framework
systematically during its implementation/development. Ob-
viously, many bugs were uncovered and fixed over the
course of its development. Since we are randomizing
the piecewise trilinear field, we are likely to cover all
possible Marching Cubes entries and also different cube
combinations. As verification tests have been applied since
the very beginning, all detectable bugs were removed,
resulting in no mismatches. The downside of MCFLOW,
though, is that typical bad quality triangles appearing in
Marching Cubes becomes even worse in MCFLOW, because
cubes of different sizes are glued together. MCFLOW
geometrical convergence is presented in the supplementary
material [36].

7 DISCUSSION AND LIMITATIONS

Quality of manufactured solutions
In any use of MMS, one very important question is that of
the quality of the manufactured solutions, since it reflects
directly on the quality of the verification process. Using
random solutions for which we compute the necessary
invariants naturally seems to yield good results. However,
our random solutions will almost always have nonidentical
values. This raises the issue of detecting and handling
degenerate inputs, such as the ones arising from quantization.
We note that most implementations use techniques such as
Simulation of Simplicity [14] (for example, by arbitrarily
breaking ties using node ordering) to effectively keep the
facade of nondegeneracy. However, we note that developing
manufactured solutions specifically to stress degeneracies is
desirable when using verification tools during development.
We decided against this since different implementations

Consistency (%) Correctness (%)

Disk Digital Surfaces SMT
β0 β1 β2 χ χ

AFRONT 0.0 35.9 22.8 35.9 47.5 25.5
MATLAB 19.7 32.2 18.9 20.5 49.3 70.3
VTKMC 0.0 27.6 23.2 27.6 43.5 70.7
MACET 0.0 54.3 20.9 54.3 64.0 100.0
SNAPMC1 0.0 45.0 25.4 45.0 57.3 72.0
SNAPMC2 53.7 41.6 17.3 23.1 87.1 74.0
MC33 0.0 2.4 1.1 2.4 3.4 5.4
DELISO 19.1 24.4 0.1 20.0 37.2 33.2
MCFLOW 0.0 0.0 0.0 0.0 0.0 0.0

TABLE 1

Rate of invariant mismatches using the PL manifold

property, digital surfaces, and stratified Morse theory

for 1000 randomly generated scalar fields (the lower the

rate the better). The invariants β1 and β2 are computed

only if the output mesh is a 2-manifold without

boundary. We run correctness tests in all algorithms for
completeness and to test tightness of the theory:

algorithms that are not topology-preserving should fail
these tests. The high number of DELISO SNAPMC and

MATLAB mismatches are explained in Section 6.1. 1

indicates zero snap parameter and 2 indicates snap

value of 0.3.

might employ different strategies to handle degeneracies, and
our goal was to keep the presentation sufficiently uniform.

Topology and Geometry
This paper extends the work by Etiene et al. [15] toward
including topology in the loop of verification for isosurface
techniques. The machinery presented herein combined with
the methodology for verifying geometry comprises a solid
battery of tests able to stress most of the existing isosurface
extraction codes.

To illustrate this we also submit MC33 and MCFLOW
techniques to the geometrical test proposed by Etiene, as
these codes have not been geometrically verified. While
MC33 has geometrical behavior in agreement with Etiene’s
approach, the results presented in Section 6 shows it
does not pass in the topological tests. On the other hand,
after ensuring that MCFLOW was successful regarding
topological tests, we submitted it to the geometrical analysis,
which revealed problems. Figure 13(c) shows an example
of an output generated in the early stages of development of
MCFLOW before (left) and after (right) fixing the bug. The
topology matches the expected one (a topological sphere)
nevertheless the geometry does not converge.

SMT vs. DT
The verification approach using digital surfaces generates
detailed information about the expected topology because it
provides β0, β1 and β2. However, verifying isosurface with
boundaries would require additional theoretical results, as
the theory supporting our verification algorithm is only valid
for surfaces without boundary. In contrast, the verification
methodology using stratified Morse theory can handle
surfaces with boundary. However, SMT only provides
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Fig. 11. DELISO mismatch example. From left to right: holes in C0 regions; single missing triangle in a smooth

region; duplicated vertex (the mesh around the duplicated vertex is shown). These behavior induce topology

mismatches between the generated mesh and the expected topology.

Fig. 12. MC33 mismatch example. From left to right: problem in the case 4.1.2, 6.1.2 and 13.5.2 of marching

cube table (all are ambiguous). Each group of three pictures shows the obtained, expected and implicit surfaces.

Our verification procedure can detect the topological differences between the obtained and expected topologies,

even for ambiguous cases.

(a) SNAPMC (snap = 0.3) (b) MATLAB (c) MCFLOW

Fig. 13. Mismatches in topology and geometry. (a) SNAPMC generates non-manifold surfaces due to the snap

process. (b) MATLAB generates some edges (red) that are shared by more than two face. (c) MCFLOWbefore

(left) and after (right) fixing a bug that causes the code to produce the expected topology but the wrong geometry.

information about the Euler characteristic, making it harder
to determine when the topological verification process
fails. Another issue with SMT is that if a code incorrectly
introduces topological features so as to preserve χ then no
failure will be detected. For example, suppose the surface
to be reconstructed is a torus, but the code produces a
torus plus three triangles, each one sharing two vertices
with the other triangles but not an edge. In this case, torus
plus three “cycling” triangles also has χ = 0, exactly the
Euler characteristic of the single torus. Notice that in that
case, digital surface based test would be able to detect the
spurious three triangles just comparing β0. Despite being
less sensitive in theory, SMT-based verification revealed
problems as well as the digital topology tests have. We
believe this effectiveness comes in part from the randomized
nature of our tests.

Implementation of SMT and DT

Verification tools should be as simple as possible while
still effective to reveal unexpected behavior. The pipeline
for geometric convergence is straightforward and thus
much less error-prone. This is mostly because, Etiene et
al.’s approach uses analytical manufactured solutions to

provide information about function value, gradients, area
and curvature. In topology, on the other hand, we can
manufacture only simple analytical solutions (e.g., a sphere,
torus, double-torus, etc) for which we know topological
invariants. There are no guarantees that these solutions will
cover all cases of a trilinear interpolant inside a cube. For
this reason, we employ a random manufactured solution,
and must then compute explicitly the topological invariants.
A point which naturally arises in verification settings is that
the verification code is another program. How do we verify
the verifier?

First, note that the implementation of either verifier is
simpler than the isosurfacing techniques under scrutiny.
This reduces the chances of a bug impacting the original
verification. In addition, we can use the same strategy to
check if the verification tools are implemented correctly.
For SMT, one may compute χ for an isovalue that is greater
than any other in the grid. In such case, the verification
tool should result in χ = 0. For DT we can use the fact
that Majority Interpolation always produces a 2-manifold.
Fortunately, this test reduces to check for two invalid
cube configurations as described by Stelldinger et al. [39].
Obviously, there might remain bugs in the verification
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code. As we have stated before, a mismatch between
the expected invariants and the computed ones indicates
a problem somewhere in the pipeline; our experiments
are empirical evidence of the technique’s effectiveness in
detecting implementation problems.

Another concern is the performance of the verification
tools. In our experiments, the invariant computation via SMT
and DS is faster than any isosurface extraction presented
in this paper for most of the random grids. In some
scenarios, DS might experience a slowdown because it
refines the grid in order to eliminate ambiguous cubes (the
maximum number of refinement is set to 4). Thus, for
SMT and DS (after grid refinement), both need to perform a
constant number of operation for each grid cube to determine
the digital surface (DS) or critical points (SMT). In this
particular context, we highlight the recent developments on
certifying algorithms, which produce both the output and
an efficiently checkable certificate of correctness [25].

Contour Trees
Contour trees [6] are powerful structures to describe the
evolution of level-sets of simply connected domains. It
normally assumes a simplicial complex as input but there
are extensions to handle regular grid [32]. Contour trees
naturally provides β0 and they can be extended to report β1
and β2. Hence, for any isovalue, we have information about
all Betti numbers, even for surfaces with boundaries. This
fact renders contour trees good candidate for verification
purposes. In fact, if an implementation is available, we
encourage its use so as to increase confidence in the
algorithms behavior. However, the implementation of a
contour tree is more complicated than the techniques
presented here. For regular-grids, a divide-and-conquer
approach can be used along with oracles representing the
split and join trees in the deepest level of the recursion,
which is non-trivial. Also, implementing the merging of the
two trees to obtain the final contour tree is still involving and
error-prone. Our approach, on the other hand, is based on
regular grid refinement and voxel selection for DT method
and critical point computation and classification for SMT
method. There are other tools, including contour trees, that
could be used to assess topology correctness of isosurface
extraction algorithms and an interesting experiment would
be to compare the number of mismatches found by each of
these tools. Nevertheless, in this paper we are focused on the
approaches using SMT and DT because of their simplicity
and effectiveness as we were able to find code mistakes
in publicly available implementations. We believe that the
simpler methodologies we have presented here are more
likely to be adopted during development of visualization
isosurfacing tools.

Topology of the underlying object
In this paper, we are interested in how to effectively verify
topological properties of codes which employ trilinear inter-
polation. In particular, this means that our verification tools
will work for implementations other than marching methods
(for example, DelIso is based on Delaunay refinement).

Nevertheless, in practice the original scalar field will not
be trilinear, and algorithms which assume a trilinearly
interpolated scalar field might not provide any topological
guarantee regarding the reconstructed object. Consider
for example a piecewise linear curve γ built by walking
through diagonals of adjacent cubes ci ∈ G and define
the distance field d(x) = min{||x − x�||such that x� ∈ γ}.
The isosurface d(x) = α for any α > 0 is a single tube
around γ . However, none of the implementations tested
could successfully reproduce the tubular structure for all
α > 0. This is not particularly surprising, since the trilinear
interpolation from samples of d is quite different from the d.
The inline figure on the
right shows a typical out-
put produced by VTK
Marching Cubes for the
distance field d = α . No-
tice, however, that this
is not only an issue of
sampling rate because if the tube keeps going through the
diagonals of cubic cells VTK will not be able reproduce
d = α yet. Also recall that some structures can not even be
reproduced by trilinear interpolants, as for example when
γ crosses diagonals of two parallel faces of a cubic cell as
described in [8], [32]. The aspects above are not errors in
the codes but reflect software design choices that should be
clearly expressed to users of those visualization techniques.

Limitations
The theoretical guarantees supporting our manufactured
solution rely on the trilinear interpolant. If an interpolant
other than trilinear is employed then new results ensuring
homeomorphism (Theorem 4.1) should be derived. The basic
infrastructure we have described here, however, should be
appropriate as a starting point for the process.

8 CONCLUSION AND FUTURE WORK

We extended the framework presented by Etiene et al. [15]
by including topology into the verification cycle. We used
machinery from digital topology and stratified Morse theory
to derive two verification tools that are simple and yet
capable of finding unexpected behavior and even code
mistakes. We argue that researchers and developers should
consider adopting verification as an integral part of the
investigation and development of scientific visualization
techniques. Topological properties are as important as
geometric ones, and deserve the same amount of attention. It
is telling that the only algorithm that passed all verification
tests proposed here is the one that used the verification
procedures during its development. We believe this happens
because topological properties are particularly subtle, and
require an unusually large amount of care.

The idea of verification through manufactured solutions is
clearly problem dependent and mathematical tools must be
tailored accordingly. Still, we expect the framework to enjoy
similar effectiveness in many areas of scientific visualization,
including volume rendering, streamline computation and
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mesh simplification. We hope that the results of this paper
further motivates the visualization community to develop a
culture of verification.
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Topology Verification for Isosurface Extraction

Response to reviewer’s suggestions

We would like to thank the reviewers for their insightful reviews.  We have addressed the issues that the 
reviewers brought up by clarifying the text and adding additional discussion on key topics. After a short 
summary of the changes, we enumerate each suggestion and specify the changes that  we made to improve 
the manuscript.

We would like to start by saying that  we do not propose a probabilistic path to the problem of topology 
verification. Furthermore, there are no formal guarantees on the type of errors that  can be found, or on 
how many errors can be found or the absence of errors. Our approach follows the one proposed by 
Babuska and Oden [1], and its goal is to increase user confidence in the correctness of the code. Our 
experiments clearly demonstrate that this approach can uncover subtle bugs.

Another major point raised by one of the reviewers concerns the similarities between our use of Stratified 
Morse Theory (SMT) and the work of [CS08] and [CM10]. While there is overlap, we have used SMT 
since it provides for a straightforward way to compute the Euler characteristic. 

Reviewer 1:

• The authors have  described the  performance on many techniques highlighted in Section  6. 
While I haven't checked the references in detail, do any of them handle  adaptive grids? One  of 
the  challenges in  handling adaptive grids is  the "patching problem"? In that regard, many 
authors have developed dual methods (e.g. dual  contouring) which work well in terms of solving 
these  patching problems. I would like  to see  some  more  discussion and evaluation of these 
methods (esp. what kind of isosurface  extraction methods can be handled by current methods). 
See the useful comparison in: "A Topological Comparison of Surface  Extraction ALgorithms", 
by Andujar et al., CAGD 2005.

We do not  address the address adaptive grids. The focus of our paper is on topology verification of 
piecewise trilinear cells in a regular grid. This has been clarified in the introduction. 

• There is extensive  work in geometric processing literature, which tends  to preserve  topology of 
extracted surfaces. It may be useful  to compare  and contrast the proposed methods  with those 
techniques. Some prominent work includes:
(i) "Topology Preserving and Controlled Topology Simplifying Multiresolution Isosurface 

Extraction", Gerstner and Pajarola, IEEE Vis. 2000.
(ii) "Global  Topology Preservation in  Isosurface Extraction of Volumetric Data", Yang and 

Zhang, Advances in Visual Cmoputing, 2006.
(iii) "Topology preserving surface extraction using adaptive subdivision", Varadhan  et al., 2004, 

Geometric Processing.

The comparison of different techniques is out of the scope of our work. We focus on the verification of 
the techniques. We will release our verification framework to the community so that  anyone can use it for 
verifying the geometric and topological properties of isosurfacing codes.
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Reviewer 2:

• Abstract improvements.

We thank the reviewer 2 for the helpful suggestions. The pointed references were indeed insightful. We 
have made a number of adjustments to improve the communication of our ideas. In particular, we have 
rewritten the abstract keeping these advices in mind. 

• Other examples of context first for managing reader expectations. intro: parag 2: Increasing 
confidence in  visualization tools is  the main goal behind verifiable  visualization [17], which aims 
at developing... --> The main goal of verifiable visualization [17] is to increase  confidence  in 
visualization tools by developing... Note  how a reader will  otherwise read this first as ``confidence 
is increasing'', then need to backtrack as they learn that this is a goal, not a happening.  The 
rewrite conserves the  reader's energy for understanding the  ideas rather than  disambiguating the 
prose. 

Fixed.

• parag 3: By starting with ``simple  and effective.  Simple methods'' the reader expects  next to 
hear about effective methods, but the word does not appear. Use parallels that you establish as 
context. 

Fixed.

• parag 4: ... are concerned with verifying isosurfacing implementations. Specifically, we are 
interested in their topological properties.  Note  that the implementation does not have  topological 
properties -- the  reader is misdirected to think that ``implementation'' is the  context.  The non-
specific verb phrases  ̀ `are concerned with'' and ``are interested in'' allow this sort of imprecision.  
Perhaps: We want to verify that an implementation computes isosurfaces with  desired topological 
properties.

Fixed.

• p.2, point 4): stressing topological  properties of the  software  being tested. [it is not the  topological 
properties but their handling that is  stressed. software being tested is context. Perhaps: stress 
testing software  handling of topological properties. OR generating test cases of difficult 
topological properties for software to handle.]

Fixed.

• next parag: ``improves  the applicability of the technique under verification'' this cumbersome 
phrase  made me  realize  that the context for the  whole paragraph should be the technique  under 
verification, so that this doesn't have  to be said in  multiple  ways. Also, stress  was just used in  a 
different way above.  Perhaps: Finally, the work of verification benefits  the  technique being 
verified by producing a comprehensive  record of the desired properties of its results, along with 
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an  objective assessment of whether these properties are  satisfied. We argue that this record 
improves the applicability of the technique  and increases the value  of visualization for the 
computational science community.

Fixed.

• sec 2, parag 2: I would prefer ``signs'' to ``polarities'', as no poles are  involved, but will  defer to 
the  authors' knowledge  of the  related literature. ``topological  matching'' is not a common term, 
and later ``topological equivalence'' is used. Why not say (and possibly define) isomorphism?

Fixed.

• p. 2, col 2, parag 2: assumptions are made on  the reconstruction kernel  used, [by whom?] --> a 
specific reconstruction kernel  is assumed [changes  the noun form ``assumptions'' to a more 
precise verb than ``made'', even if you stick with passive.]

Fixed.

• Still, that approach does  not reproduce the  topology of trilinear functions as it cannot deal  with 
ambiguities internal to a grid cell. This happens because  some non-homeomorphic isosurfaces, 
when restricted to the  cube faces, are in  fact homeomorphic.  [First, don't change  terms: method 
or methodology becomes approach, and grid cell  becomes cube  here. Second, word carefully to 
avoid the  seeming self-contradiction.] Their method cannot always reproduce the  topology of a 
trilinear function  because there remains potential  ambiguity internal to a grid cell: non-
homeomorphic isosurfaces can have isomorphic intersections with all grid cell faces.

Fixed.

• In fig 2, labeling the vertices with the letters would avoid the mapping to colors, which is  an 
unnecessary additional conceptual step and may be lost in b/w reproduction.

Fixed.

• col 2, point 1)  separate math with words, not just a comma.

Fixed.

• p 5, proof of 4.1: t is reused as the isosurface name and trilinear function. 

The isosurface is $t(x) = \alpha$, which is defined at the first  paragraph of section 4.1. No changes were 
made.

• p 6, sec 4.2: if we  continuously move  [we don't move] along a scalar value \alpha, [establish  alpha 
as  context, not ``we''] the topology of two isosurface[s] ..mumble.. are different [plural verb with 
singular subject ``topology''] only when  [time  is not involved] there is ... [note  how critical value 
comes well  before its definition.] --> for a scalar value alpha, the  topologies  of two 
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isosurfaces  ..mumble.. differ only if the interval [alpha, alpha+epsilon] contains a critical  value.  
(f(p) is a critical ... [Again, identifying context helps pinpoint prose to repair.]

Fixed.

• Fig 6 caption should tell the  dimension that the  manifold has  to help the reader interpret the 
figure. 

Fixed.

• p.6, table at 43: the text immediately above  the  number of negative  eigenvalues, so the  reader is 
likely to first think that those are  the numbers in  the table. Perhaps reorder: In  a smooth function 
f, the  number of negative eigenvalues of the Hessian matrix determines  the index of a critical 
point p, and the four types give the following the Euler characteristics, chi(L-(p)) and chi(L+(p)):

Fixed.

• line 57: intuitively argue about the concept -> argue about the intuitive concepts?

Fixed.

• p. 6, col. 2, line 51: point -> points

Fixed.

• p. 7, line 54 \delta -> \Delta.  Check for others. 

Fixed.

• Fig 7, line 3: what is the  result of random sampling?  Are you changing values in the grid, or 
choosing a point p?  The  caption  should also say what the goal  of the method is by specifying 
input and desired output: is script-G an input or output parameter, or both?

Fixed. The input  parameter G is a nxnxn grid. The random sampling assigns random values to the grid 
nodes of G.

• p. 8, line 52: don't you set x,y, OR z and solve a quadratic?

Fixed.

• p.9 DelIso description should drop one of the  words `` approach'' or ``technique.'' p.9,col  2,line 
57: mistakes -> makes mistakes OR is mistaken line  59: delete ``of some  implementations under 
verification''

Fixed.
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• p.10, line 3: submitted to -> subjected to line  60: topology behavior of meshes  --> behavior of 
mesh topologies sec 6.2: these  were  not previously called a ``methodology''; perhaps say, 
``verification tests'' instead? (change was->were, if you do)

Fixed.

• col 2, parag 2: Although our methodology eventually discards scalar fields because either 
ambiguous cells are still present ... Please  be  specific of what part of  ̀ `our methodology'' since this 
word is overused in the paper, and please  reword so it no longer sounds like all scalar fields are 
discarded. Perhaps: Although we discard test sets that are found to contain ambiguous cells, or...

Fixed.

• p. 11, line 23 were->was line 29 criteria -> criterion

Fixed.

• Table 1 should align numbers along the decimal points. 

Fixed.

• p.12, line 40: presented -> discovered?

Fixed. presented -> revealed.

• You have to handle  monkey saddles in SMT that are not handled in smooth Morse  theory. 
Below, we  prove  that saddles  do not appear with trilinear interpolants and the scalar fields that 
we use for verification purposes.

Since there are many different  definitions of monkey saddles, we will take that to mean "degenerate 
saddles with zero Hessian". 

A critical point  must  appear in one of the four strata of the manifold we are examining, since the strata 
form a partition. 

If the critical point  lies in the 3-dimensional stratum, then smooth Morse theory suffices (and smooth 
Morse theory is what  stratified Morse theory becomes when the stratum has ambient dimension) can be 
employed, since by assumption the Hessian has derivative nonzero (as we describe in the first  paragraph 
of section 5.2, we only verify implementations using non-degenerate scalar fields) and so all critical 
points are non-degenerate. If the critical point  does not  lie in the 3-dimensional stratum, then stratification 
is necessary. 

No critical point  will appear in the 1-dimensional stratum, since the restriction of the scalar field is linear 
on all points. The zero-dimensional stratum has no smooth component, and so it does not make sense to 
talk about  Hessians there (and, in any case, equations 4.1 through 4.6 provide the tools to describe the 
local topology to the necessary degree).
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The only remaining case, that  of a point in the 2-dimensional stratum, is treated the same way as a point 
in the 3-dimensional stratum: for the Hessian to be zero inside the face, the quadratic equation of the 
bilinear interpolant must  have a discriminant  of zero. We simply check that case and discard the resulting 
field if it occurs

• Kurt Mehlhorn and the LEDA team have  some nice  work on verifying geometric algorithms that 
could be referenced. 

We have included a reference to Mehlhorn’s work in our updated manuscript. 
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Reviewer 3:
 
• Significant portions of it duplicate  existing work  [CS08][CM10], albeit with a different 

formalism.
In particular, while Stratified Morse  Theory (SMT) antedates [CS08], the  mechanism discussed 
in [CS08] was applied to isosurfacing, and should be  discussed, especially since  it relies on  the 
same identification of critical points in subfaces.

We cite [CS08] work in section 4.2. The reason we have chosen Stratified Morse Theory is that it  gives a 
very straightforward analysis of the change in Euler Characteristic of any given critical point, regardless 
of the dimensionality of the subface in which the critical point is located and the local configuration of the 
manifold. 

Although the theory in [CS08] and [CM10] does provide a thorough analysis of the topology of the 
trilinear interpolant, we believe that  our approach leads to simple algorithms for verification.  Computing 
$\Chi$ for a lower or upper link literally reduces to 10 lines of code in our approach; a single recursive 
loop through the cardinalities of the 1-dimensional links. 

•  Moreover, a number of the  assertions about the  topology of isosurfaces in a trilinear cell  are 
insufficiently supported, and either [Nie03] or [CM10] should be referred to.

We have made those changes based on the recommendations on the
attached document.

• Finally, the  premise is that by randomly sampling the isovalues, the  probability of discovering 
errors is high. However, given that topological  errors tend to clump around particular features, 
this is not necessarily true. 

We did not quite understand the remark regarding the clumping of topological errors and features. 

In any case, we can not make a statement about the probability of error detection. This is in no small part
because we do not have a model for the types of  errors which would be effective to cover the wide 
variety of implementations and possible types of errors.

• Its weakest aspect is that the  authors make insufficiently clear that this is  a probabilistic claim 
about the verification, rather than a strict guarantee.

The outlined framework does not come with bounded probabilities or formal proofs of
correctness. Whether this is possible or not is out of the scope of our paper.
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Our approach is based on the framework proposed by Babuska and Oden [1]. We highlight  in the third 
paragraph of Section 1 that  verification is a process and the next  bug might always be there.  The goal of 
verifiable visualization "is to increase confidence in visualization tools."  This is fundamentally different
from verification approaches which strive for a proof of correctness.

Extra from reviewer 3:

• "The  discussion  of Stratified Morse  Theory and the  notion of the  critical points of the  stratified 
Morse function parallel the definition of 'potential  critical points' used in [CS08]: this should be 
cited and discussed".

We have added a discussion in the main text.

We argue that using stratified morse theory here is more appropriate. To quote [CS08]:
 'Define vertices and Morse critical points of a cell to be potential critical points: potential because 
 they may not be global critical points.'

The definition of a potential critical point and the critical points of SMT  are in fact  related to one another. 
We argue that our exposition through Stratified Morse Theory compares favorable in simplicity, 
generality and calculation convenience (the latter one obviously restricted to the computation of the Euler 
characteristic). Stratified Morse Theory gives a tool which predicts the kind of topological change any 
critical point will have on the level set by a completely local analysis of cardinality of the Morse data, as 
we describe in the text. The analysis using the state diagrams and machines previously presented is, in our 
opinion, more complicated.  For example it is not clear how can we use the proposed state machines
to predict the total final topology of an entire scalar field, a central issue in our work, composed of many 
such cubes? How should we account  for the interaction between the topologies of adjacent cubes? In 
contrast, the Stratified Morse Theory monograph we cite contains a full description of the machinery 
necessary for a rigorous proof of our assertions.

• "data is" vs "data are":

In accordance to the IEEE style guide, we choose to use "Morse data" as a mass noun.

data: Follow author preference for use as singular or plural, but  maintain consistency within an article 
(unless context clearly demands inconsistency).

• "verified" is perhaps too strong a term here, as  the  most that can be  claimed is a high  probability 
of consistency. And even that *ought* to come  with a proof of bounded probability of incorrect 
verification.

This is already discussed previously.
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• \Delta_x, \Delta_y, \Delta_z - given that [Nie03] & [CM10] have  already used a different notation 
for these  terms, it would be  preferable if the authors  used notation consistent with  the previous 
work.

We adopt the notation from Pascucci and Cole-McLaughlin 2003.

• "For simplicity, in this paper we refine" - one  of the consequences of the  analysis in [CM10] is 
that ambiguity can only be  removed by dividing at the isovalues of the  critical points. Thus, 
uniformly doubling the grid resolution should be expected to fail. If it does not, then this bears 
consideration.

 We agree with the reviewer and, as described in Section 5.3, other subdivision criteria can be
used, including subdivisions at  critical points. In order to devise an algorithm which is simple to 
implement, a highly desirable property for verification purposes, we opted for uniform subdivision of grid 
cubes. As pointed out in the manuscript, a direct  consequence of this choice is that  sometimes the process 
fails (as expected), i.e., the maximum allowed number of subdivision is reached and not all resultant 
cubes are  unambiguous, as required by our digital topology framework. At this point, we resampled the 
scalar field once again and restart  the subdivision process from scratch. In our experiments we observed 
eliminating certain scalar fields does not introduce bias in the frequency of cases and all cases are 
eventually covered by the verification procedure, as explained in Section 6.2. Although a subdivision 
scheme based on critical points could lead to fewer subdivisions, and perhaps faster algorithms, our main 
goal is to show the benefits of this verification framework.
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